![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumss | Structured version Visualization version GIF version |
Description: Change the index set to a subset by adding zeroes. (Contributed by Thierry Arnoux, 19-Jun-2017.) |
Ref | Expression |
---|---|
esumss.p | ⊢ Ⅎ𝑘𝜑 |
esumss.a | ⊢ Ⅎ𝑘𝐴 |
esumss.b | ⊢ Ⅎ𝑘𝐵 |
esumss.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
esumss.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
esumss.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) |
esumss.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) |
Ref | Expression |
---|---|
esumss | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumss.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | esumss.b | . . . . . . 7 ⊢ Ⅎ𝑘𝐵 | |
3 | esumss.a | . . . . . . 7 ⊢ Ⅎ𝑘𝐴 | |
4 | 2, 3 | resmptf 5486 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → ((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) = (𝑘 ∈ 𝐴 ↦ 𝐶)) |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) = (𝑘 ∈ 𝐴 ↦ 𝐶)) |
6 | 5 | oveq2d 6706 | . . . 4 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums ((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴)) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶))) |
7 | xrge0base 29813 | . . . . 5 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
8 | xrge00 29814 | . . . . 5 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
9 | xrge0cmn 19836 | . . . . . 6 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
10 | 9 | a1i 11 | . . . . 5 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd) |
11 | xrge0tps 30116 | . . . . . 6 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp | |
12 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp) |
13 | esumss.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
14 | esumss.p | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
15 | nfcv 2793 | . . . . . 6 ⊢ Ⅎ𝑘(0[,]+∞) | |
16 | esumss.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) | |
17 | eqid 2651 | . . . . . 6 ⊢ (𝑘 ∈ 𝐵 ↦ 𝐶) = (𝑘 ∈ 𝐵 ↦ 𝐶) | |
18 | 14, 2, 15, 16, 17 | fmptdF 29584 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐵 ↦ 𝐶):𝐵⟶(0[,]+∞)) |
19 | esumss.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) | |
20 | 14, 2, 3, 19, 13 | suppss2f 29567 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ 𝐵 ↦ 𝐶) supp 0) ⊆ 𝐴) |
21 | 7, 8, 10, 12, 13, 18, 20 | tsmsres 21994 | . . . 4 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums ((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴)) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐵 ↦ 𝐶))) |
22 | 6, 21 | eqtr3d 2687 | . . 3 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐵 ↦ 𝐶))) |
23 | 22 | unieqd 4478 | . 2 ⊢ (𝜑 → ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐵 ↦ 𝐶))) |
24 | df-esum 30218 | . 2 ⊢ Σ*𝑘 ∈ 𝐴𝐶 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶)) | |
25 | df-esum 30218 | . 2 ⊢ Σ*𝑘 ∈ 𝐵𝐶 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐵 ↦ 𝐶)) | |
26 | 23, 24, 25 | 3eqtr4g 2710 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 Ⅎwnf 1748 ∈ wcel 2030 Ⅎwnfc 2780 ∖ cdif 3604 ⊆ wss 3607 ∪ cuni 4468 ↦ cmpt 4762 ↾ cres 5145 (class class class)co 6690 0cc0 9974 +∞cpnf 10109 [,]cicc 12216 ↾s cress 15905 ℝ*𝑠cxrs 16207 CMndccmn 18239 TopSpctps 20784 tsums ctsu 21976 Σ*cesum 30217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-fi 8358 df-oi 8456 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-xadd 11985 df-icc 12220 df-fz 12365 df-fzo 12505 df-seq 12842 df-hash 13158 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-tset 16007 df-ple 16008 df-ds 16011 df-rest 16130 df-topn 16131 df-0g 16149 df-gsum 16150 df-topgen 16151 df-ordt 16208 df-xrs 16209 df-ps 17247 df-tsr 17248 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-submnd 17383 df-cntz 17796 df-cmn 18241 df-fbas 19791 df-fg 19792 df-top 20747 df-topon 20764 df-topsp 20785 df-bases 20798 df-ntr 20872 df-nei 20950 df-fil 21697 df-fm 21789 df-flim 21790 df-flf 21791 df-tsms 21977 df-esum 30218 |
This theorem is referenced by: esumpinfval 30263 |
Copyright terms: Public domain | W3C validator |