![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumrnmpt | Structured version Visualization version GIF version |
Description: Rewrite an extended sum into a sum on the range of a mapping function. (Contributed by Thierry Arnoux, 27-May-2020.) |
Ref | Expression |
---|---|
esumrnmpt.0 | ⊢ Ⅎ𝑘𝐴 |
esumrnmpt.1 | ⊢ (𝑦 = 𝐵 → 𝐶 = 𝐷) |
esumrnmpt.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumrnmpt.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐷 ∈ (0[,]+∞)) |
esumrnmpt.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (𝑊 ∖ {∅})) |
esumrnmpt.5 | ⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) |
Ref | Expression |
---|---|
esumrnmpt | ⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝐶 = Σ*𝑘 ∈ 𝐴𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2912 | . . 3 ⊢ Ⅎ𝑘𝐶 | |
2 | nfv 1994 | . . 3 ⊢ Ⅎ𝑘𝜑 | |
3 | esumrnmpt.0 | . . 3 ⊢ Ⅎ𝑘𝐴 | |
4 | esumrnmpt.1 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐶 = 𝐷) | |
5 | esumrnmpt.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | esumrnmpt.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (𝑊 ∖ {∅})) | |
7 | esumrnmpt.5 | . . . 4 ⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) | |
8 | 2, 3, 6, 7 | disjdsct 29814 | . . 3 ⊢ (𝜑 → Fun ◡(𝑘 ∈ 𝐴 ↦ 𝐵)) |
9 | esumrnmpt.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐷 ∈ (0[,]+∞)) | |
10 | 1, 2, 3, 4, 5, 8, 9, 6 | esumc 30447 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐷 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵}𝐶) |
11 | eqid 2770 | . . . 4 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
12 | 11 | rnmpt 5509 | . . 3 ⊢ ran (𝑘 ∈ 𝐴 ↦ 𝐵) = {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} |
13 | esumeq1 30430 | . . 3 ⊢ (ran (𝑘 ∈ 𝐴 ↦ 𝐵) = {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵} → Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝐶 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵}𝐶) | |
14 | 12, 13 | ax-mp 5 | . 2 ⊢ Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝐶 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘 ∈ 𝐴 𝑧 = 𝐵}𝐶 |
15 | 10, 14 | syl6reqr 2823 | 1 ⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝐶 = Σ*𝑘 ∈ 𝐴𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 {cab 2756 Ⅎwnfc 2899 ∃wrex 3061 ∖ cdif 3718 ∅c0 4061 {csn 4314 Disj wdisj 4752 ↦ cmpt 4861 ran crn 5250 (class class class)co 6792 0cc0 10137 +∞cpnf 10272 [,]cicc 12382 Σ*cesum 30423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-disj 4753 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-supp 7446 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-map 8010 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fsupp 8431 df-fi 8472 df-oi 8570 df-card 8964 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-xadd 12151 df-icc 12386 df-fz 12533 df-fzo 12673 df-seq 13008 df-hash 13321 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-tset 16167 df-ple 16168 df-ds 16171 df-rest 16290 df-topn 16291 df-0g 16309 df-gsum 16310 df-topgen 16311 df-ordt 16368 df-xrs 16369 df-ps 17407 df-tsr 17408 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-submnd 17543 df-cntz 17956 df-cmn 18401 df-fbas 19957 df-fg 19958 df-top 20918 df-topon 20935 df-topsp 20957 df-bases 20970 df-ntr 21044 df-nei 21122 df-fil 21869 df-fm 21961 df-flim 21962 df-flf 21963 df-tsms 22149 df-esum 30424 |
This theorem is referenced by: esumrnmpt2 30464 |
Copyright terms: Public domain | W3C validator |