Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpfinvallem Structured version   Visualization version   GIF version

Theorem esumpfinvallem 30264
Description: Lemma for esumpfinval 30265. (Contributed by Thierry Arnoux, 28-Jun-2017.)
Assertion
Ref Expression
esumpfinvallem ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℂfld Σg 𝐹) = ((ℝ*𝑠s (0[,]+∞)) Σg 𝐹))

Proof of Theorem esumpfinvallem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fex 6530 . . . 4 ((𝐹:𝐴⟶(0[,)+∞) ∧ 𝐴𝑉) → 𝐹 ∈ V)
21ancoms 468 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → 𝐹 ∈ V)
3 ovexd 6720 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℂflds (0[,)+∞)) ∈ V)
4 ovexd 6720 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℝ*𝑠s (0[,)+∞)) ∈ V)
5 rge0ssre 12318 . . . . . . 7 (0[,)+∞) ⊆ ℝ
6 ax-resscn 10031 . . . . . . 7 ℝ ⊆ ℂ
75, 6sstri 3645 . . . . . 6 (0[,)+∞) ⊆ ℂ
8 eqid 2651 . . . . . . 7 (ℂflds (0[,)+∞)) = (ℂflds (0[,)+∞))
9 cnfldbas 19798 . . . . . . 7 ℂ = (Base‘ℂfld)
108, 9ressbas2 15978 . . . . . 6 ((0[,)+∞) ⊆ ℂ → (0[,)+∞) = (Base‘(ℂflds (0[,)+∞))))
117, 10ax-mp 5 . . . . 5 (0[,)+∞) = (Base‘(ℂflds (0[,)+∞)))
12 icossxr 12296 . . . . . 6 (0[,)+∞) ⊆ ℝ*
13 eqid 2651 . . . . . . 7 (ℝ*𝑠s (0[,)+∞)) = (ℝ*𝑠s (0[,)+∞))
14 xrsbas 19810 . . . . . . 7 * = (Base‘ℝ*𝑠)
1513, 14ressbas2 15978 . . . . . 6 ((0[,)+∞) ⊆ ℝ* → (0[,)+∞) = (Base‘(ℝ*𝑠s (0[,)+∞))))
1612, 15ax-mp 5 . . . . 5 (0[,)+∞) = (Base‘(ℝ*𝑠s (0[,)+∞)))
1711, 16eqtr3i 2675 . . . 4 (Base‘(ℂflds (0[,)+∞))) = (Base‘(ℝ*𝑠s (0[,)+∞)))
1817a1i 11 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (Base‘(ℂflds (0[,)+∞))) = (Base‘(ℝ*𝑠s (0[,)+∞))))
19 simprl 809 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → 𝑥 ∈ (Base‘(ℂflds (0[,)+∞))))
2019, 11syl6eleqr 2741 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → 𝑥 ∈ (0[,)+∞))
21 simprr 811 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))
2221, 11syl6eleqr 2741 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → 𝑦 ∈ (0[,)+∞))
23 ge0addcl 12322 . . . . 5 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,)+∞))
24 ovex 6718 . . . . . . 7 (0[,)+∞) ∈ V
25 cnfldadd 19799 . . . . . . . 8 + = (+g‘ℂfld)
268, 25ressplusg 16040 . . . . . . 7 ((0[,)+∞) ∈ V → + = (+g‘(ℂflds (0[,)+∞))))
2724, 26ax-mp 5 . . . . . 6 + = (+g‘(ℂflds (0[,)+∞)))
2827oveqi 6703 . . . . 5 (𝑥 + 𝑦) = (𝑥(+g‘(ℂflds (0[,)+∞)))𝑦)
2923, 28, 113eltr3g 2746 . . . 4 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥(+g‘(ℂflds (0[,)+∞)))𝑦) ∈ (Base‘(ℂflds (0[,)+∞))))
3020, 22, 29syl2anc 694 . . 3 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → (𝑥(+g‘(ℂflds (0[,)+∞)))𝑦) ∈ (Base‘(ℂflds (0[,)+∞))))
31 simpl 472 . . . . . . 7 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑥 ∈ (0[,)+∞))
325, 31sseldi 3634 . . . . . 6 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑥 ∈ ℝ)
33 simpr 476 . . . . . . 7 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑦 ∈ (0[,)+∞))
345, 33sseldi 3634 . . . . . 6 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑦 ∈ ℝ)
35 rexadd 12101 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 +𝑒 𝑦) = (𝑥 + 𝑦))
3635eqcomd 2657 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) = (𝑥 +𝑒 𝑦))
3732, 34, 36syl2anc 694 . . . . 5 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) = (𝑥 +𝑒 𝑦))
38 xrsadd 19811 . . . . . . . 8 +𝑒 = (+g‘ℝ*𝑠)
3913, 38ressplusg 16040 . . . . . . 7 ((0[,)+∞) ∈ V → +𝑒 = (+g‘(ℝ*𝑠s (0[,)+∞))))
4024, 39ax-mp 5 . . . . . 6 +𝑒 = (+g‘(ℝ*𝑠s (0[,)+∞)))
4140oveqi 6703 . . . . 5 (𝑥 +𝑒 𝑦) = (𝑥(+g‘(ℝ*𝑠s (0[,)+∞)))𝑦)
4237, 28, 413eqtr3g 2708 . . . 4 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥(+g‘(ℂflds (0[,)+∞)))𝑦) = (𝑥(+g‘(ℝ*𝑠s (0[,)+∞)))𝑦))
4320, 22, 42syl2anc 694 . . 3 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥 ∈ (Base‘(ℂflds (0[,)+∞))) ∧ 𝑦 ∈ (Base‘(ℂflds (0[,)+∞))))) → (𝑥(+g‘(ℂflds (0[,)+∞)))𝑦) = (𝑥(+g‘(ℝ*𝑠s (0[,)+∞)))𝑦))
44 simpr 476 . . . 4 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → 𝐹:𝐴⟶(0[,)+∞))
45 ffun 6086 . . . 4 (𝐹:𝐴⟶(0[,)+∞) → Fun 𝐹)
4644, 45syl 17 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → Fun 𝐹)
47 frn 6091 . . . . 5 (𝐹:𝐴⟶(0[,)+∞) → ran 𝐹 ⊆ (0[,)+∞))
4844, 47syl 17 . . . 4 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → ran 𝐹 ⊆ (0[,)+∞))
4948, 11syl6sseq 3684 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → ran 𝐹 ⊆ (Base‘(ℂflds (0[,)+∞))))
502, 3, 4, 18, 30, 43, 46, 49gsumpropd2 17321 . 2 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → ((ℂflds (0[,)+∞)) Σg 𝐹) = ((ℝ*𝑠s (0[,)+∞)) Σg 𝐹))
51 cnfldex 19797 . . . 4 fld ∈ V
5251a1i 11 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → ℂfld ∈ V)
53 simpl 472 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → 𝐴𝑉)
547a1i 11 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (0[,)+∞) ⊆ ℂ)
55 0e0icopnf 12320 . . . 4 0 ∈ (0[,)+∞)
5655a1i 11 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → 0 ∈ (0[,)+∞))
57 simpr 476 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
5857addid2d 10275 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ ℂ) → (0 + 𝑥) = 𝑥)
5957addid1d 10274 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ ℂ) → (𝑥 + 0) = 𝑥)
6058, 59jca 553 . . 3 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ ℂ) → ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))
619, 25, 8, 52, 53, 54, 44, 56, 60gsumress 17323 . 2 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℂfld Σg 𝐹) = ((ℂflds (0[,)+∞)) Σg 𝐹))
62 xrge0base 29813 . . 3 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
63 xrge0plusg 29815 . . 3 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
64 ovex 6718 . . . . 5 (0[,]+∞) ∈ V
65 ressress 15985 . . . . 5 (((0[,]+∞) ∈ V ∧ (0[,)+∞) ∈ V) → ((ℝ*𝑠s (0[,]+∞)) ↾s (0[,)+∞)) = (ℝ*𝑠s ((0[,]+∞) ∩ (0[,)+∞))))
6664, 24, 65mp2an 708 . . . 4 ((ℝ*𝑠s (0[,]+∞)) ↾s (0[,)+∞)) = (ℝ*𝑠s ((0[,]+∞) ∩ (0[,)+∞)))
67 incom 3838 . . . . . 6 ((0[,]+∞) ∩ (0[,)+∞)) = ((0[,)+∞) ∩ (0[,]+∞))
68 icossicc 12298 . . . . . . 7 (0[,)+∞) ⊆ (0[,]+∞)
69 dfss 3622 . . . . . . 7 ((0[,)+∞) ⊆ (0[,]+∞) ↔ (0[,)+∞) = ((0[,)+∞) ∩ (0[,]+∞)))
7068, 69mpbi 220 . . . . . 6 (0[,)+∞) = ((0[,)+∞) ∩ (0[,]+∞))
7167, 70eqtr4i 2676 . . . . 5 ((0[,]+∞) ∩ (0[,)+∞)) = (0[,)+∞)
7271oveq2i 6701 . . . 4 (ℝ*𝑠s ((0[,]+∞) ∩ (0[,)+∞))) = (ℝ*𝑠s (0[,)+∞))
7366, 72eqtr2i 2674 . . 3 (ℝ*𝑠s (0[,)+∞)) = ((ℝ*𝑠s (0[,]+∞)) ↾s (0[,)+∞))
74 ovexd 6720 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℝ*𝑠s (0[,]+∞)) ∈ V)
7568a1i 11 . . 3 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (0[,)+∞) ⊆ (0[,]+∞))
76 iccssxr 12294 . . . . . 6 (0[,]+∞) ⊆ ℝ*
77 simpr 476 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ (0[,]+∞))
7876, 77sseldi 3634 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ ℝ*)
79 xaddid2 12111 . . . . 5 (𝑥 ∈ ℝ* → (0 +𝑒 𝑥) = 𝑥)
8078, 79syl 17 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → (0 +𝑒 𝑥) = 𝑥)
81 xaddid1 12110 . . . . 5 (𝑥 ∈ ℝ* → (𝑥 +𝑒 0) = 𝑥)
8278, 81syl 17 . . . 4 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → (𝑥 +𝑒 0) = 𝑥)
8380, 82jca 553 . . 3 (((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → ((0 +𝑒 𝑥) = 𝑥 ∧ (𝑥 +𝑒 0) = 𝑥))
8462, 63, 73, 74, 53, 75, 44, 56, 83gsumress 17323 . 2 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → ((ℝ*𝑠s (0[,]+∞)) Σg 𝐹) = ((ℝ*𝑠s (0[,)+∞)) Σg 𝐹))
8550, 61, 843eqtr4d 2695 1 ((𝐴𝑉𝐹:𝐴⟶(0[,)+∞)) → (ℂfld Σg 𝐹) = ((ℝ*𝑠s (0[,]+∞)) Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  Vcvv 3231  cin 3606  wss 3607  ran crn 5144  Fun wfun 5920  wf 5922  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974   + caddc 9977  +∞cpnf 10109  *cxr 10111   +𝑒 cxad 11982  [,)cico 12215  [,]cicc 12216  Basecbs 15904  s cress 15905  +gcplusg 15988   Σg cgsu 16148  *𝑠cxrs 16207  fldccnfld 19794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-addf 10053
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-xadd 11985  df-ico 12219  df-icc 12220  df-fz 12365  df-seq 12842  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-0g 16149  df-gsum 16150  df-xrs 16209  df-cnfld 19795
This theorem is referenced by:  esumpfinval  30265  esumpfinvalf  30266  esumpcvgval  30268  esumcvg  30276
  Copyright terms: Public domain W3C validator