Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpfinvalf Structured version   Visualization version   GIF version

Theorem esumpfinvalf 29961
Description: Same as esumpfinval 29960, minus distinct variable restrictions. (Contributed by Thierry Arnoux, 28-Aug-2017.) (Proof shortened by AV, 25-Jul-2019.)
Hypotheses
Ref Expression
esumpfinvalf.1 𝑘𝐴
esumpfinvalf.2 𝑘𝜑
esumpfinvalf.a (𝜑𝐴 ∈ Fin)
esumpfinvalf.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
Assertion
Ref Expression
esumpfinvalf (𝜑 → Σ*𝑘𝐴𝐵 = Σ𝑘𝐴 𝐵)

Proof of Theorem esumpfinvalf
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 df-esum 29913 . . . 4 Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
2 xrge0base 29512 . . . . . 6 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
3 xrge00 29513 . . . . . 6 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
4 xrge0cmn 19728 . . . . . . 7 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
54a1i 11 . . . . . 6 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
6 xrge0tps 29812 . . . . . . 7 (ℝ*𝑠s (0[,]+∞)) ∈ TopSp
76a1i 11 . . . . . 6 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ TopSp)
8 esumpfinvalf.a . . . . . 6 (𝜑𝐴 ∈ Fin)
9 esumpfinvalf.2 . . . . . . 7 𝑘𝜑
10 esumpfinvalf.1 . . . . . . 7 𝑘𝐴
11 nfcv 2761 . . . . . . 7 𝑘(0[,]+∞)
12 icossicc 12218 . . . . . . . 8 (0[,)+∞) ⊆ (0[,]+∞)
13 esumpfinvalf.b . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
1412, 13sseldi 3586 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
15 eqid 2621 . . . . . . 7 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
169, 10, 11, 14, 15fmptdF 29339 . . . . . 6 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
17 c0ex 9994 . . . . . . . 8 0 ∈ V
1817a1i 11 . . . . . . 7 (𝜑 → 0 ∈ V)
1916, 8, 18fdmfifsupp 8245 . . . . . 6 (𝜑 → (𝑘𝐴𝐵) finSupp 0)
20 xrge0topn 29813 . . . . . . 7 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
2120eqcomi 2630 . . . . . 6 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
22 xrhaus 29420 . . . . . . . 8 (ordTop‘ ≤ ) ∈ Haus
23 ovex 6643 . . . . . . . 8 (0[,]+∞) ∈ V
24 resthaus 21112 . . . . . . . 8 (((ordTop‘ ≤ ) ∈ Haus ∧ (0[,]+∞) ∈ V) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus)
2522, 23, 24mp2an 707 . . . . . . 7 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus
2625a1i 11 . . . . . 6 (𝜑 → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus)
272, 3, 5, 7, 8, 16, 19, 21, 26haustsmsid 21884 . . . . 5 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = {((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))})
2827unieqd 4419 . . . 4 (𝜑 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = {((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))})
291, 28syl5eq 2667 . . 3 (𝜑 → Σ*𝑘𝐴𝐵 = {((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))})
30 ovex 6643 . . . 4 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ V
3130unisn 4424 . . 3 {((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))} = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))
3229, 31syl6eq 2671 . 2 (𝜑 → Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
33 nfcv 2761 . . . 4 𝑘(0[,)+∞)
349, 10, 33, 13, 15fmptdF 29339 . . 3 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,)+∞))
35 esumpfinvallem 29959 . . 3 ((𝐴 ∈ Fin ∧ (𝑘𝐴𝐵):𝐴⟶(0[,)+∞)) → (ℂfld Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
368, 34, 35syl2anc 692 . 2 (𝜑 → (ℂfld Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
37 rge0ssre 12238 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
38 ax-resscn 9953 . . . . . . . 8 ℝ ⊆ ℂ
3937, 38sstri 3597 . . . . . . 7 (0[,)+∞) ⊆ ℂ
4039, 13sseldi 3586 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
4140sbt 2418 . . . . 5 [𝑙 / 𝑘]((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
42 sbim 2394 . . . . . 6 ([𝑙 / 𝑘]((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ([𝑙 / 𝑘](𝜑𝑘𝐴) → [𝑙 / 𝑘]𝐵 ∈ ℂ))
43 sban 2398 . . . . . . . 8 ([𝑙 / 𝑘](𝜑𝑘𝐴) ↔ ([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘𝐴))
449sbf 2379 . . . . . . . . 9 ([𝑙 / 𝑘]𝜑𝜑)
4510clelsb3f 29209 . . . . . . . . 9 ([𝑙 / 𝑘]𝑘𝐴𝑙𝐴)
4644, 45anbi12i 732 . . . . . . . 8 (([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘𝐴) ↔ (𝜑𝑙𝐴))
4743, 46bitri 264 . . . . . . 7 ([𝑙 / 𝑘](𝜑𝑘𝐴) ↔ (𝜑𝑙𝐴))
48 sbsbc 3426 . . . . . . . 8 ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ [𝑙 / 𝑘]𝐵 ∈ ℂ)
49 vex 3193 . . . . . . . . 9 𝑙 ∈ V
50 sbcel1g 3965 . . . . . . . . 9 (𝑙 ∈ V → ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ 𝑙 / 𝑘𝐵 ∈ ℂ))
5149, 50ax-mp 5 . . . . . . . 8 ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ 𝑙 / 𝑘𝐵 ∈ ℂ)
5248, 51bitri 264 . . . . . . 7 ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ 𝑙 / 𝑘𝐵 ∈ ℂ)
5347, 52imbi12i 340 . . . . . 6 (([𝑙 / 𝑘](𝜑𝑘𝐴) → [𝑙 / 𝑘]𝐵 ∈ ℂ) ↔ ((𝜑𝑙𝐴) → 𝑙 / 𝑘𝐵 ∈ ℂ))
5442, 53bitri 264 . . . . 5 ([𝑙 / 𝑘]((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑙𝐴) → 𝑙 / 𝑘𝐵 ∈ ℂ))
5541, 54mpbi 220 . . . 4 ((𝜑𝑙𝐴) → 𝑙 / 𝑘𝐵 ∈ ℂ)
568, 55gsumfsum 19753 . . 3 (𝜑 → (ℂfld Σg (𝑙𝐴𝑙 / 𝑘𝐵)) = Σ𝑙𝐴 𝑙 / 𝑘𝐵)
57 nfcv 2761 . . . . 5 𝑙𝐴
58 nfcv 2761 . . . . 5 𝑙𝐵
59 nfcsb1v 3535 . . . . 5 𝑘𝑙 / 𝑘𝐵
60 csbeq1a 3528 . . . . 5 (𝑘 = 𝑙𝐵 = 𝑙 / 𝑘𝐵)
6110, 57, 58, 59, 60cbvmptf 4718 . . . 4 (𝑘𝐴𝐵) = (𝑙𝐴𝑙 / 𝑘𝐵)
6261oveq2i 6626 . . 3 (ℂfld Σg (𝑘𝐴𝐵)) = (ℂfld Σg (𝑙𝐴𝑙 / 𝑘𝐵))
6360, 57, 10, 58, 59cbvsum 14375 . . 3 Σ𝑘𝐴 𝐵 = Σ𝑙𝐴 𝑙 / 𝑘𝐵
6456, 62, 633eqtr4g 2680 . 2 (𝜑 → (ℂfld Σg (𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵)
6532, 36, 643eqtr2d 2661 1 (𝜑 → Σ*𝑘𝐴𝐵 = Σ𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wnf 1705  [wsb 1877  wcel 1987  wnfc 2748  Vcvv 3190  [wsbc 3422  csb 3519  {csn 4155   cuni 4409  cmpt 4683  wf 5853  cfv 5857  (class class class)co 6615  Fincfn 7915  cc 9894  cr 9895  0cc0 9896  +∞cpnf 10031  cle 10035  [,)cico 12135  [,]cicc 12136  Σcsu 14366  s cress 15801  t crest 16021  TopOpenctopn 16022   Σg cgsu 16041  ordTopcordt 16099  *𝑠cxrs 16100  CMndccmn 18133  fldccnfld 19686  TopSpctps 20676  Hauscha 21052   tsums ctsu 21869  Σ*cesum 29912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-addf 9975  ax-mulf 9976
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-supp 7256  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-map 7819  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fsupp 8236  df-fi 8277  df-sup 8308  df-oi 8375  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-rp 11793  df-xadd 11907  df-ico 12139  df-icc 12140  df-fz 12285  df-fzo 12423  df-seq 12758  df-exp 12817  df-hash 13074  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-clim 14169  df-sum 14367  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-starv 15896  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-rest 16023  df-topn 16024  df-0g 16042  df-gsum 16043  df-topgen 16044  df-ordt 16101  df-xrs 16102  df-ps 17140  df-tsr 17141  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-submnd 17276  df-grp 17365  df-minusg 17366  df-cntz 17690  df-cmn 18135  df-abl 18136  df-mgp 18430  df-ur 18442  df-ring 18489  df-cring 18490  df-fbas 19683  df-fg 19684  df-cnfld 19687  df-top 20639  df-topon 20656  df-topsp 20677  df-bases 20690  df-cld 20763  df-ntr 20764  df-cls 20765  df-nei 20842  df-cn 20971  df-haus 21059  df-fil 21590  df-fm 21682  df-flim 21683  df-flf 21684  df-tsms 21870  df-esum 29913
This theorem is referenced by:  volfiniune  30116
  Copyright terms: Public domain W3C validator