![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumpfinval | Structured version Visualization version GIF version |
Description: The value of the extended sum of a finite set of nonnegative finite terms. (Contributed by Thierry Arnoux, 28-Jun-2017.) (Proof shortened by AV, 25-Jul-2019.) |
Ref | Expression |
---|---|
esumpfinval.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
esumpfinval.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
Ref | Expression |
---|---|
esumpfinval | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ𝑘 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-esum 30320 | . . . 4 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
2 | xrge0base 29915 | . . . . . 6 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
3 | xrge00 29916 | . . . . . 6 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
4 | xrge0cmn 19911 | . . . . . . 7 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd) |
6 | xrge0tps 30218 | . . . . . . 7 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp | |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp) |
8 | esumpfinval.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
9 | icossicc 12374 | . . . . . . . 8 ⊢ (0[,)+∞) ⊆ (0[,]+∞) | |
10 | esumpfinval.b | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) | |
11 | 9, 10 | sseldi 3707 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
12 | eqid 2724 | . . . . . . 7 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
13 | 11, 12 | fmptd 6500 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
14 | c0ex 10147 | . . . . . . . 8 ⊢ 0 ∈ V | |
15 | 14 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ V) |
16 | 12, 8, 10, 15 | fsuppmptdm 8402 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) finSupp 0) |
17 | xrge0topn 30219 | . . . . . . 7 ⊢ (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | |
18 | 17 | eqcomi 2733 | . . . . . 6 ⊢ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) |
19 | xrhaus 29765 | . . . . . . . 8 ⊢ (ordTop‘ ≤ ) ∈ Haus | |
20 | ovex 6793 | . . . . . . . 8 ⊢ (0[,]+∞) ∈ V | |
21 | resthaus 21295 | . . . . . . . 8 ⊢ (((ordTop‘ ≤ ) ∈ Haus ∧ (0[,]+∞) ∈ V) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus) | |
22 | 19, 20, 21 | mp2an 710 | . . . . . . 7 ⊢ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus |
23 | 22 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus) |
24 | 2, 3, 5, 7, 8, 13, 16, 18, 23 | haustsmsid 22066 | . . . . 5 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = {((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))}) |
25 | 24 | unieqd 4554 | . . . 4 ⊢ (𝜑 → ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = ∪ {((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))}) |
26 | 1, 25 | syl5eq 2770 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = ∪ {((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))}) |
27 | ovex 6793 | . . . 4 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ V | |
28 | 27 | unisn 4559 | . . 3 ⊢ ∪ {((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))} = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) |
29 | 26, 28 | syl6eq 2774 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
30 | 10, 12 | fmptd 6500 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,)+∞)) |
31 | esumpfinvallem 30366 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,)+∞)) → (ℂfld Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) | |
32 | 8, 30, 31 | syl2anc 696 | . 2 ⊢ (𝜑 → (ℂfld Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
33 | rge0ssre 12394 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
34 | ax-resscn 10106 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
35 | 33, 34 | sstri 3718 | . . . 4 ⊢ (0[,)+∞) ⊆ ℂ |
36 | 35, 10 | sseldi 3707 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
37 | 8, 36 | gsumfsum 19936 | . 2 ⊢ (𝜑 → (ℂfld Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ𝑘 ∈ 𝐴 𝐵) |
38 | 29, 32, 37 | 3eqtr2d 2764 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ𝑘 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1596 ∈ wcel 2103 Vcvv 3304 {csn 4285 ∪ cuni 4544 ↦ cmpt 4837 ⟶wf 5997 ‘cfv 6001 (class class class)co 6765 Fincfn 8072 ℂcc 10047 ℝcr 10048 0cc0 10049 +∞cpnf 10184 ≤ cle 10188 [,)cico 12291 [,]cicc 12292 Σcsu 14536 ↾s cress 15981 ↾t crest 16204 TopOpenctopn 16205 Σg cgsu 16224 ordTopcordt 16282 ℝ*𝑠cxrs 16283 CMndccmn 18314 ℂfldccnfld 19869 TopSpctps 20859 Hauscha 21235 tsums ctsu 22051 Σ*cesum 30319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-inf2 8651 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 ax-pre-sup 10127 ax-addf 10128 ax-mulf 10129 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-fal 1602 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-iin 4631 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-se 5178 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-isom 6010 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-1st 7285 df-2nd 7286 df-supp 7416 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-1o 7680 df-oadd 7684 df-er 7862 df-map 7976 df-en 8073 df-dom 8074 df-sdom 8075 df-fin 8076 df-fsupp 8392 df-fi 8433 df-sup 8464 df-oi 8531 df-card 8878 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-div 10798 df-nn 11134 df-2 11192 df-3 11193 df-4 11194 df-5 11195 df-6 11196 df-7 11197 df-8 11198 df-9 11199 df-n0 11406 df-z 11491 df-dec 11607 df-uz 11801 df-rp 11947 df-xadd 12061 df-ico 12295 df-icc 12296 df-fz 12441 df-fzo 12581 df-seq 12917 df-exp 12976 df-hash 13233 df-cj 13959 df-re 13960 df-im 13961 df-sqrt 14095 df-abs 14096 df-clim 14339 df-sum 14537 df-struct 15982 df-ndx 15983 df-slot 15984 df-base 15986 df-sets 15987 df-ress 15988 df-plusg 16077 df-mulr 16078 df-starv 16079 df-tset 16083 df-ple 16084 df-ds 16087 df-unif 16088 df-rest 16206 df-topn 16207 df-0g 16225 df-gsum 16226 df-topgen 16227 df-ordt 16284 df-xrs 16285 df-ps 17322 df-tsr 17323 df-mgm 17364 df-sgrp 17406 df-mnd 17417 df-submnd 17458 df-grp 17547 df-minusg 17548 df-cntz 17871 df-cmn 18316 df-abl 18317 df-mgp 18611 df-ur 18623 df-ring 18670 df-cring 18671 df-fbas 19866 df-fg 19867 df-cnfld 19870 df-top 20822 df-topon 20839 df-topsp 20860 df-bases 20873 df-cld 20946 df-ntr 20947 df-cls 20948 df-nei 21025 df-cn 21154 df-haus 21242 df-fil 21772 df-fm 21864 df-flim 21865 df-flf 21866 df-tsms 22052 df-esum 30320 |
This theorem is referenced by: hasheuni 30377 esumcvg 30378 sibfof 30632 |
Copyright terms: Public domain | W3C validator |