Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumfzf Structured version   Visualization version   GIF version

Theorem esumfzf 30461
Description: Formulating a partial extended sum over integers using the recursive sequence builder. (Contributed by Thierry Arnoux, 18-Oct-2017.)
Hypothesis
Ref Expression
esumfzf.1 𝑘𝐹
Assertion
Ref Expression
esumfzf ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑁 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁))
Distinct variable group:   𝑘,𝑁
Allowed substitution hint:   𝐹(𝑘)

Proof of Theorem esumfzf
Dummy variables 𝑖 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1992 . . . . . 6 𝑘 𝑖 = 1
2 oveq2 6822 . . . . . 6 (𝑖 = 1 → (1...𝑖) = (1...1))
31, 2esumeq1d 30427 . . . . 5 (𝑖 = 1 → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = Σ*𝑘 ∈ (1...1)(𝐹𝑘))
4 fveq2 6353 . . . . 5 (𝑖 = 1 → (seq1( +𝑒 , 𝐹)‘𝑖) = (seq1( +𝑒 , 𝐹)‘1))
53, 4eqeq12d 2775 . . . 4 (𝑖 = 1 → (Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖) ↔ Σ*𝑘 ∈ (1...1)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘1)))
65imbi2d 329 . . 3 (𝑖 = 1 → ((𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖)) ↔ (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...1)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘1))))
7 nfv 1992 . . . . . 6 𝑘 𝑖 = 𝑛
8 oveq2 6822 . . . . . 6 (𝑖 = 𝑛 → (1...𝑖) = (1...𝑛))
97, 8esumeq1d 30427 . . . . 5 (𝑖 = 𝑛 → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘))
10 fveq2 6353 . . . . 5 (𝑖 = 𝑛 → (seq1( +𝑒 , 𝐹)‘𝑖) = (seq1( +𝑒 , 𝐹)‘𝑛))
119, 10eqeq12d 2775 . . . 4 (𝑖 = 𝑛 → (Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖) ↔ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)))
1211imbi2d 329 . . 3 (𝑖 = 𝑛 → ((𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖)) ↔ (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛))))
13 nfv 1992 . . . . . 6 𝑘 𝑖 = (𝑛 + 1)
14 oveq2 6822 . . . . . 6 (𝑖 = (𝑛 + 1) → (1...𝑖) = (1...(𝑛 + 1)))
1513, 14esumeq1d 30427 . . . . 5 (𝑖 = (𝑛 + 1) → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘))
16 fveq2 6353 . . . . 5 (𝑖 = (𝑛 + 1) → (seq1( +𝑒 , 𝐹)‘𝑖) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)))
1715, 16eqeq12d 2775 . . . 4 (𝑖 = (𝑛 + 1) → (Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖) ↔ Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1))))
1817imbi2d 329 . . 3 (𝑖 = (𝑛 + 1) → ((𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖)) ↔ (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)))))
19 nfv 1992 . . . . . 6 𝑘 𝑖 = 𝑁
20 oveq2 6822 . . . . . 6 (𝑖 = 𝑁 → (1...𝑖) = (1...𝑁))
2119, 20esumeq1d 30427 . . . . 5 (𝑖 = 𝑁 → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘))
22 fveq2 6353 . . . . 5 (𝑖 = 𝑁 → (seq1( +𝑒 , 𝐹)‘𝑖) = (seq1( +𝑒 , 𝐹)‘𝑁))
2321, 22eqeq12d 2775 . . . 4 (𝑖 = 𝑁 → (Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖) ↔ Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁)))
2423imbi2d 329 . . 3 (𝑖 = 𝑁 → ((𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑖)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑖)) ↔ (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁))))
25 fveq2 6353 . . . . . 6 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
26 nfcv 2902 . . . . . 6 𝑥{1}
27 nfcv 2902 . . . . . 6 𝑘{1}
28 nfcv 2902 . . . . . 6 𝑥(𝐹𝑘)
29 esumfzf.1 . . . . . . 7 𝑘𝐹
30 nfcv 2902 . . . . . . 7 𝑘𝑥
3129, 30nffv 6360 . . . . . 6 𝑘(𝐹𝑥)
3225, 26, 27, 28, 31cbvesum 30434 . . . . 5 Σ*𝑘 ∈ {1} (𝐹𝑘) = Σ*𝑥 ∈ {1} (𝐹𝑥)
33 simpr 479 . . . . . . 7 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 = 1) → 𝑥 = 1)
3433fveq2d 6357 . . . . . 6 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑥 = 1) → (𝐹𝑥) = (𝐹‘1))
35 1z 11619 . . . . . . 7 1 ∈ ℤ
3635a1i 11 . . . . . 6 (𝐹:ℕ⟶(0[,]+∞) → 1 ∈ ℤ)
37 1nn 11243 . . . . . . 7 1 ∈ ℕ
38 ffvelrn 6521 . . . . . . 7 ((𝐹:ℕ⟶(0[,]+∞) ∧ 1 ∈ ℕ) → (𝐹‘1) ∈ (0[,]+∞))
3937, 38mpan2 709 . . . . . 6 (𝐹:ℕ⟶(0[,]+∞) → (𝐹‘1) ∈ (0[,]+∞))
4034, 36, 39esumsn 30457 . . . . 5 (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑥 ∈ {1} (𝐹𝑥) = (𝐹‘1))
4132, 40syl5eq 2806 . . . 4 (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ {1} (𝐹𝑘) = (𝐹‘1))
42 fzsn 12596 . . . . . 6 (1 ∈ ℤ → (1...1) = {1})
4335, 42ax-mp 5 . . . . 5 (1...1) = {1}
44 esumeq1 30426 . . . . 5 ((1...1) = {1} → Σ*𝑘 ∈ (1...1)(𝐹𝑘) = Σ*𝑘 ∈ {1} (𝐹𝑘))
4543, 44ax-mp 5 . . . 4 Σ*𝑘 ∈ (1...1)(𝐹𝑘) = Σ*𝑘 ∈ {1} (𝐹𝑘)
46 seq1 13028 . . . . 5 (1 ∈ ℤ → (seq1( +𝑒 , 𝐹)‘1) = (𝐹‘1))
4735, 46ax-mp 5 . . . 4 (seq1( +𝑒 , 𝐹)‘1) = (𝐹‘1)
4841, 45, 473eqtr4g 2819 . . 3 (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...1)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘1))
49 simpl 474 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → 𝑛 ∈ ℕ)
50 nnuz 11936 . . . . . . . . 9 ℕ = (ℤ‘1)
5149, 50syl6eleq 2849 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → 𝑛 ∈ (ℤ‘1))
52 seqp1 13030 . . . . . . . 8 (𝑛 ∈ (ℤ‘1) → (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)) = ((seq1( +𝑒 , 𝐹)‘𝑛) +𝑒 (𝐹‘(𝑛 + 1))))
5351, 52syl 17 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)) = ((seq1( +𝑒 , 𝐹)‘𝑛) +𝑒 (𝐹‘(𝑛 + 1))))
5453adantr 472 . . . . . 6 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)) = ((seq1( +𝑒 , 𝐹)‘𝑛) +𝑒 (𝐹‘(𝑛 + 1))))
55 simpr 479 . . . . . . 7 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛))
5655oveq1d 6829 . . . . . 6 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 (𝐹‘(𝑛 + 1))) = ((seq1( +𝑒 , 𝐹)‘𝑛) +𝑒 (𝐹‘(𝑛 + 1))))
57 nfv 1992 . . . . . . . . . 10 𝑘 𝑛 ∈ ℕ
5857nfci 2892 . . . . . . . . . . 11 𝑘
59 nfcv 2902 . . . . . . . . . . 11 𝑘(0[,]+∞)
6029, 58, 59nff 6202 . . . . . . . . . 10 𝑘 𝐹:ℕ⟶(0[,]+∞)
6157, 60nfan 1977 . . . . . . . . 9 𝑘(𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞))
62 fzsuc 12601 . . . . . . . . . 10 (𝑛 ∈ (ℤ‘1) → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)}))
6351, 62syl 17 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (1...(𝑛 + 1)) = ((1...𝑛) ∪ {(𝑛 + 1)}))
6461, 63esumeq1d 30427 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = Σ*𝑘 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})(𝐹𝑘))
65 nfcv 2902 . . . . . . . . 9 𝑘(1...𝑛)
66 nfcv 2902 . . . . . . . . 9 𝑘{(𝑛 + 1)}
67 ovexd 6844 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (1...𝑛) ∈ V)
68 snex 5057 . . . . . . . . . 10 {(𝑛 + 1)} ∈ V
6968a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → {(𝑛 + 1)} ∈ V)
70 fzp1disj 12612 . . . . . . . . . 10 ((1...𝑛) ∩ {(𝑛 + 1)}) = ∅
7170a1i 11 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → ((1...𝑛) ∩ {(𝑛 + 1)}) = ∅)
72 simplr 809 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ (1...𝑛)) → 𝐹:ℕ⟶(0[,]+∞))
73 fzssnn 12598 . . . . . . . . . . . 12 (1 ∈ ℕ → (1...𝑛) ⊆ ℕ)
7437, 73ax-mp 5 . . . . . . . . . . 11 (1...𝑛) ⊆ ℕ
75 simpr 479 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ (1...𝑛))
7674, 75sseldi 3742 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
7772, 76ffvelrnd 6524 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ (1...𝑛)) → (𝐹𝑘) ∈ (0[,]+∞))
78 simplr 809 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝐹:ℕ⟶(0[,]+∞))
79 simpr 479 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝑘 ∈ {(𝑛 + 1)})
80 velsn 4337 . . . . . . . . . . . 12 (𝑘 ∈ {(𝑛 + 1)} ↔ 𝑘 = (𝑛 + 1))
8179, 80sylib 208 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝑘 = (𝑛 + 1))
82 simpll 807 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝑛 ∈ ℕ)
8382peano2nnd 11249 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → (𝑛 + 1) ∈ ℕ)
8481, 83eqeltrd 2839 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → 𝑘 ∈ ℕ)
8578, 84ffvelrnd 6524 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑘 ∈ {(𝑛 + 1)}) → (𝐹𝑘) ∈ (0[,]+∞))
8661, 65, 66, 67, 69, 71, 77, 85esumsplit 30445 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → Σ*𝑘 ∈ ((1...𝑛) ∪ {(𝑛 + 1)})(𝐹𝑘) = (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 Σ*𝑘 ∈ {(𝑛 + 1)} (𝐹𝑘)))
87 nfcv 2902 . . . . . . . . . . 11 𝑥{(𝑛 + 1)}
8825, 87, 66, 28, 31cbvesum 30434 . . . . . . . . . 10 Σ*𝑘 ∈ {(𝑛 + 1)} (𝐹𝑘) = Σ*𝑥 ∈ {(𝑛 + 1)} (𝐹𝑥)
89 simpr 479 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑥 = (𝑛 + 1)) → 𝑥 = (𝑛 + 1))
9089fveq2d 6357 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ 𝑥 = (𝑛 + 1)) → (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
9149peano2nnd 11249 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (𝑛 + 1) ∈ ℕ)
92 simpr 479 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → 𝐹:ℕ⟶(0[,]+∞))
9392, 91ffvelrnd 6524 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (𝐹‘(𝑛 + 1)) ∈ (0[,]+∞))
9490, 91, 93esumsn 30457 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → Σ*𝑥 ∈ {(𝑛 + 1)} (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
9588, 94syl5eq 2806 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → Σ*𝑘 ∈ {(𝑛 + 1)} (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
9695oveq2d 6830 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 Σ*𝑘 ∈ {(𝑛 + 1)} (𝐹𝑘)) = (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 (𝐹‘(𝑛 + 1))))
9764, 86, 963eqtrrd 2799 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 (𝐹‘(𝑛 + 1))) = Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘))
9897adantr 472 . . . . . 6 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) +𝑒 (𝐹‘(𝑛 + 1))) = Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘))
9954, 56, 983eqtr2rd 2801 . . . . 5 (((𝑛 ∈ ℕ ∧ 𝐹:ℕ⟶(0[,]+∞)) ∧ Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)))
10099exp31 631 . . . 4 (𝑛 ∈ ℕ → (𝐹:ℕ⟶(0[,]+∞) → (Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛) → Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)))))
101100a2d 29 . . 3 (𝑛 ∈ ℕ → ((𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑛)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑛)) → (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...(𝑛 + 1))(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘(𝑛 + 1)))))
1026, 12, 18, 24, 48, 101nnind 11250 . 2 (𝑁 ∈ ℕ → (𝐹:ℕ⟶(0[,]+∞) → Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁)))
103102impcom 445 1 ((𝐹:ℕ⟶(0[,]+∞) ∧ 𝑁 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑁)(𝐹𝑘) = (seq1( +𝑒 , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wnfc 2889  Vcvv 3340  cun 3713  cin 3714  wss 3715  c0 4058  {csn 4321  wf 6045  cfv 6049  (class class class)co 6814  0cc0 10148  1c1 10149   + caddc 10151  +∞cpnf 10283  cn 11232  cz 11589  cuz 11899   +𝑒 cxad 12157  [,]cicc 12391  ...cfz 12539  seqcseq 13015  Σ*cesum 30419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ioo 12392  df-ioc 12393  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-fl 12807  df-mod 12883  df-seq 13016  df-exp 13075  df-fac 13275  df-bc 13304  df-hash 13332  df-shft 14026  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-limsup 14421  df-clim 14438  df-rlim 14439  df-sum 14636  df-ef 15017  df-sin 15019  df-cos 15020  df-pi 15022  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-pt 16327  df-prds 16330  df-ordt 16383  df-xrs 16384  df-qtop 16389  df-imas 16390  df-xps 16392  df-mre 16468  df-mrc 16469  df-acs 16471  df-ps 17421  df-tsr 17422  df-plusf 17462  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mhm 17556  df-submnd 17557  df-grp 17646  df-minusg 17647  df-sbg 17648  df-mulg 17762  df-subg 17812  df-cntz 17970  df-cmn 18415  df-abl 18416  df-mgp 18710  df-ur 18722  df-ring 18769  df-cring 18770  df-subrg 19000  df-abv 19039  df-lmod 19087  df-scaf 19088  df-sra 19394  df-rgmod 19395  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-fbas 19965  df-fg 19966  df-cnfld 19969  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-lp 21162  df-perf 21163  df-cn 21253  df-cnp 21254  df-haus 21341  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-tmd 22097  df-tgp 22098  df-tsms 22151  df-trg 22184  df-xms 22346  df-ms 22347  df-tms 22348  df-nm 22608  df-ngp 22609  df-nrg 22611  df-nlm 22612  df-ii 22901  df-cncf 22902  df-limc 23849  df-dv 23850  df-log 24523  df-esum 30420
This theorem is referenced by:  esumfsup  30462  esumsup  30481
  Copyright terms: Public domain W3C validator