![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumeq2dv | Structured version Visualization version GIF version |
Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 2-Jan-2017.) |
Ref | Expression |
---|---|
esumeq2dv.1 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
esumeq2dv | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1994 | . 2 ⊢ Ⅎ𝑘𝜑 | |
2 | esumeq2dv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 = 𝐶) | |
3 | 2 | ralrimiva 3114 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 = 𝐶) |
4 | 1, 3 | esumeq2d 30433 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ*𝑘 ∈ 𝐴𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 Σ*cesum 30423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-iota 5994 df-fv 6039 df-ov 6795 df-esum 30424 |
This theorem is referenced by: esumeq2sdv 30435 esumle 30454 esummulc1 30477 esummulc2 30478 esumdivc 30479 esumsup 30485 measinb 30618 measres 30619 measdivcstOLD 30621 measdivcst 30622 cntmeas 30623 ddemeas 30633 omsval 30689 totprobd 30822 |
Copyright terms: Public domain | W3C validator |