![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for an extended sum. (Contributed by Thierry Arnoux, 18-Feb-2017.) |
Ref | Expression |
---|---|
esumeq1 | ⊢ (𝐴 = 𝐵 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | eqidd 2761 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
3 | 1, 2 | esumeq12d 30425 | 1 ⊢ (𝐴 = 𝐵 → Σ*𝑘 ∈ 𝐴𝐶 = Σ*𝑘 ∈ 𝐵𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 Σ*cesum 30419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-iota 6012 df-fv 6057 df-ov 6817 df-esum 30420 |
This theorem is referenced by: esumrnmpt 30444 esumpad 30447 esumpad2 30448 esumpr 30458 esumpr2 30459 esumfzf 30461 esumpmono 30471 esumcvg 30478 esumcvg2 30479 esum2dlem 30484 measvun 30602 ddemeas 30629 oms0 30689 omssubadd 30692 carsgsigalem 30707 carsgclctunlem1 30709 carsgclctunlem2 30711 carsgclctun 30713 pmeasmono 30716 pmeasadd 30717 |
Copyright terms: Public domain | W3C validator |