![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumdivc | Structured version Visualization version GIF version |
Description: An extended sum divided by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017.) |
Ref | Expression |
---|---|
esumdivc.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumdivc.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
esumdivc.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
Ref | Expression |
---|---|
esumdivc | ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 /𝑒 𝐶) = Σ*𝑘 ∈ 𝐴(𝐵 /𝑒 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumdivc.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | esumdivc.b | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
3 | 1red 10218 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℝ) | |
4 | esumdivc.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
5 | 4 | rpred 12036 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
6 | 4 | rpne0d 12041 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 0) |
7 | rexdiv 29914 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (1 /𝑒 𝐶) = (1 / 𝐶)) | |
8 | 3, 5, 6, 7 | syl3anc 1463 | . . . 4 ⊢ (𝜑 → (1 /𝑒 𝐶) = (1 / 𝐶)) |
9 | ioorp 12415 | . . . . . 6 ⊢ (0(,)+∞) = ℝ+ | |
10 | ioossico 12426 | . . . . . 6 ⊢ (0(,)+∞) ⊆ (0[,)+∞) | |
11 | 9, 10 | eqsstr3i 3765 | . . . . 5 ⊢ ℝ+ ⊆ (0[,)+∞) |
12 | 4 | rpreccld 12046 | . . . . 5 ⊢ (𝜑 → (1 / 𝐶) ∈ ℝ+) |
13 | 11, 12 | sseldi 3730 | . . . 4 ⊢ (𝜑 → (1 / 𝐶) ∈ (0[,)+∞)) |
14 | 8, 13 | eqeltrd 2827 | . . 3 ⊢ (𝜑 → (1 /𝑒 𝐶) ∈ (0[,)+∞)) |
15 | 1, 2, 14 | esummulc1 30423 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 ·e (1 /𝑒 𝐶)) = Σ*𝑘 ∈ 𝐴(𝐵 ·e (1 /𝑒 𝐶))) |
16 | iccssxr 12420 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
17 | 2 | ralrimiva 3092 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) |
18 | nfcv 2890 | . . . . . 6 ⊢ Ⅎ𝑘𝐴 | |
19 | 18 | esumcl 30372 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
20 | 1, 17, 19 | syl2anc 696 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
21 | 16, 20 | sseldi 3730 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ*) |
22 | xdivrec 29915 | . . 3 ⊢ ((Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (Σ*𝑘 ∈ 𝐴𝐵 /𝑒 𝐶) = (Σ*𝑘 ∈ 𝐴𝐵 ·e (1 /𝑒 𝐶))) | |
23 | 21, 5, 6, 22 | syl3anc 1463 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 /𝑒 𝐶) = (Σ*𝑘 ∈ 𝐴𝐵 ·e (1 /𝑒 𝐶))) |
24 | 16, 2 | sseldi 3730 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
25 | 5 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) |
26 | 6 | adantr 472 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ≠ 0) |
27 | xdivrec 29915 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (𝐵 /𝑒 𝐶) = (𝐵 ·e (1 /𝑒 𝐶))) | |
28 | 24, 25, 26, 27 | syl3anc 1463 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 /𝑒 𝐶) = (𝐵 ·e (1 /𝑒 𝐶))) |
29 | 28 | esumeq2dv 30380 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴(𝐵 /𝑒 𝐶) = Σ*𝑘 ∈ 𝐴(𝐵 ·e (1 /𝑒 𝐶))) |
30 | 15, 23, 29 | 3eqtr4d 2792 | 1 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐵 /𝑒 𝐶) = Σ*𝑘 ∈ 𝐴(𝐵 /𝑒 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1620 ∈ wcel 2127 ≠ wne 2920 ∀wral 3038 (class class class)co 6801 ℝcr 10098 0cc0 10099 1c1 10100 +∞cpnf 10234 ℝ*cxr 10236 / cdiv 10847 ℝ+crp 11996 ·e cxmu 12109 (,)cioo 12339 [,)cico 12341 [,]cicc 12342 /𝑒 cxdiv 29905 Σ*cesum 30369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 ax-pre-sup 10177 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-fal 1626 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-int 4616 df-iun 4662 df-iin 4663 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-se 5214 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-isom 6046 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-of 7050 df-om 7219 df-1st 7321 df-2nd 7322 df-supp 7452 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7899 df-map 8013 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fsupp 8429 df-fi 8470 df-sup 8501 df-inf 8502 df-oi 8568 df-card 8926 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-div 10848 df-nn 11184 df-2 11242 df-3 11243 df-4 11244 df-5 11245 df-6 11246 df-7 11247 df-8 11248 df-9 11249 df-n0 11456 df-z 11541 df-dec 11657 df-uz 11851 df-q 11953 df-rp 11997 df-xneg 12110 df-xadd 12111 df-xmul 12112 df-ioo 12343 df-ioc 12344 df-ico 12345 df-icc 12346 df-fz 12491 df-fzo 12631 df-seq 12967 df-hash 13283 df-struct 16032 df-ndx 16033 df-slot 16034 df-base 16036 df-sets 16037 df-ress 16038 df-plusg 16127 df-mulr 16128 df-tset 16133 df-ple 16134 df-ds 16137 df-rest 16256 df-topn 16257 df-0g 16275 df-gsum 16276 df-topgen 16277 df-ordt 16334 df-xrs 16335 df-mre 16419 df-mrc 16420 df-acs 16422 df-ps 17372 df-tsr 17373 df-mgm 17414 df-sgrp 17456 df-mnd 17467 df-mhm 17507 df-submnd 17508 df-cntz 17921 df-cmn 18366 df-fbas 19916 df-fg 19917 df-top 20872 df-topon 20889 df-topsp 20910 df-bases 20923 df-ntr 20997 df-nei 21075 df-cn 21204 df-cnp 21205 df-haus 21292 df-fil 21822 df-fm 21914 df-flim 21915 df-flf 21916 df-tsms 22102 df-xdiv 29906 df-esum 30370 |
This theorem is referenced by: measdivcstOLD 30567 measdivcst 30568 |
Copyright terms: Public domain | W3C validator |