Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumcst Structured version   Visualization version   GIF version

Theorem esumcst 30253
Description: The extended sum of a constant. (Contributed by Thierry Arnoux, 3-Mar-2017.) (Revised by Thierry Arnoux, 5-Jul-2017.)
Hypotheses
Ref Expression
esumcst.1 𝑘𝐴
esumcst.2 𝑘𝐵
Assertion
Ref Expression
esumcst ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 = ((#‘𝐴) ·e 𝐵))
Distinct variable group:   𝑘,𝑉
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem esumcst
Dummy variables 𝑎 𝑙 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 esumcst.1 . . . . 5 𝑘𝐴
21nfel1 2808 . . . 4 𝑘 𝐴𝑉
3 esumcst.2 . . . . 5 𝑘𝐵
43nfel1 2808 . . . 4 𝑘 𝐵 ∈ (0[,]+∞)
52, 4nfan 1868 . . 3 𝑘(𝐴𝑉𝐵 ∈ (0[,]+∞))
6 simpl 472 . . 3 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → 𝐴𝑉)
7 simplr 807 . . 3 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
8 xrge0tmd 30120 . . . . . . 7 (ℝ*𝑠s (0[,]+∞)) ∈ TopMnd
9 tmdmnd 21926 . . . . . . 7 ((ℝ*𝑠s (0[,]+∞)) ∈ TopMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
108, 9ax-mp 5 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
1110a1i 11 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
12 inss2 3867 . . . . . 6 (𝒫 𝐴 ∩ Fin) ⊆ Fin
13 simpr 476 . . . . . 6 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
1412, 13sseldi 3634 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
15 simplr 807 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐵 ∈ (0[,]+∞))
16 xrge0base 29813 . . . . . 6 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
17 eqid 2651 . . . . . 6 (.g‘(ℝ*𝑠s (0[,]+∞))) = (.g‘(ℝ*𝑠s (0[,]+∞)))
183, 16, 17gsumconstf 18381 . . . . 5 (((ℝ*𝑠s (0[,]+∞)) ∈ Mnd ∧ 𝑥 ∈ Fin ∧ 𝐵 ∈ (0[,]+∞)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((#‘𝑥)(.g‘(ℝ*𝑠s (0[,]+∞)))𝐵))
1911, 14, 15, 18syl3anc 1366 . . . 4 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((#‘𝑥)(.g‘(ℝ*𝑠s (0[,]+∞)))𝐵))
20 hashcl 13185 . . . . . 6 (𝑥 ∈ Fin → (#‘𝑥) ∈ ℕ0)
2114, 20syl 17 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (#‘𝑥) ∈ ℕ0)
22 xrge0mulgnn0 29817 . . . . 5 (((#‘𝑥) ∈ ℕ0𝐵 ∈ (0[,]+∞)) → ((#‘𝑥)(.g‘(ℝ*𝑠s (0[,]+∞)))𝐵) = ((#‘𝑥) ·e 𝐵))
2321, 15, 22syl2anc 694 . . . 4 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((#‘𝑥)(.g‘(ℝ*𝑠s (0[,]+∞)))𝐵) = ((#‘𝑥) ·e 𝐵))
2419, 23eqtrd 2685 . . 3 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((#‘𝑥) ·e 𝐵))
255, 1, 6, 7, 24esumval 30236 . 2 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵)), ℝ*, < ))
26 nn0ssre 11334 . . . . . . . . . 10 0 ⊆ ℝ
27 ressxr 10121 . . . . . . . . . 10 ℝ ⊆ ℝ*
2826, 27sstri 3645 . . . . . . . . 9 0 ⊆ ℝ*
29 pnfxr 10130 . . . . . . . . . 10 +∞ ∈ ℝ*
30 snssi 4371 . . . . . . . . . 10 (+∞ ∈ ℝ* → {+∞} ⊆ ℝ*)
3129, 30ax-mp 5 . . . . . . . . 9 {+∞} ⊆ ℝ*
3228, 31unssi 3821 . . . . . . . 8 (ℕ0 ∪ {+∞}) ⊆ ℝ*
33 hashf 13165 . . . . . . . . 9 #:V⟶(ℕ0 ∪ {+∞})
34 vex 3234 . . . . . . . . 9 𝑥 ∈ V
35 ffvelrn 6397 . . . . . . . . 9 ((#:V⟶(ℕ0 ∪ {+∞}) ∧ 𝑥 ∈ V) → (#‘𝑥) ∈ (ℕ0 ∪ {+∞}))
3633, 34, 35mp2an 708 . . . . . . . 8 (#‘𝑥) ∈ (ℕ0 ∪ {+∞})
3732, 36sselii 3633 . . . . . . 7 (#‘𝑥) ∈ ℝ*
3837a1i 11 . . . . . 6 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (#‘𝑥) ∈ ℝ*)
39 iccssxr 12294 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
40 simpr 476 . . . . . . . 8 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → 𝐵 ∈ (0[,]+∞))
4139, 40sseldi 3634 . . . . . . 7 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → 𝐵 ∈ ℝ*)
4241adantr 480 . . . . . 6 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐵 ∈ ℝ*)
4338, 42xmulcld 12170 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((#‘𝑥) ·e 𝐵) ∈ ℝ*)
44 eqid 2651 . . . . 5 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵)) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵))
4543, 44fmptd 6425 . . . 4 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵)):(𝒫 𝐴 ∩ Fin)⟶ℝ*)
46 frn 6091 . . . 4 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵)):(𝒫 𝐴 ∩ Fin)⟶ℝ* → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵)) ⊆ ℝ*)
4745, 46syl 17 . . 3 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵)) ⊆ ℝ*)
48 hashxrcl 13186 . . . . 5 (𝐴𝑉 → (#‘𝐴) ∈ ℝ*)
4948adantr 480 . . . 4 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → (#‘𝐴) ∈ ℝ*)
5049, 41xmulcld 12170 . . 3 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → ((#‘𝐴) ·e 𝐵) ∈ ℝ*)
51 vex 3234 . . . . . . . 8 𝑦 ∈ V
5244elrnmpt 5404 . . . . . . . 8 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((#‘𝑥) ·e 𝐵)))
5351, 52ax-mp 5 . . . . . . 7 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((#‘𝑥) ·e 𝐵))
5453biimpi 206 . . . . . 6 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((#‘𝑥) ·e 𝐵))
5549adantr 480 . . . . . . . 8 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (#‘𝐴) ∈ ℝ*)
56 0xr 10124 . . . . . . . . . . 11 0 ∈ ℝ*
5756a1i 11 . . . . . . . . . 10 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ∈ ℝ*)
5829a1i 11 . . . . . . . . . 10 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → +∞ ∈ ℝ*)
59 iccgelb 12268 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵)
6057, 58, 15, 59syl3anc 1366 . . . . . . . . 9 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ≤ 𝐵)
6142, 60jca 553 . . . . . . . 8 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
626adantr 480 . . . . . . . . . 10 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐴𝑉)
63 inss1 3866 . . . . . . . . . . . 12 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
6463sseli 3632 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
65 elpwi 4201 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
6613, 64, 653syl 18 . . . . . . . . . 10 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝐴)
67 ssdomg 8043 . . . . . . . . . 10 (𝐴𝑉 → (𝑥𝐴𝑥𝐴))
6862, 66, 67sylc 65 . . . . . . . . 9 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝐴)
69 hashdomi 13207 . . . . . . . . 9 (𝑥𝐴 → (#‘𝑥) ≤ (#‘𝐴))
7068, 69syl 17 . . . . . . . 8 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (#‘𝑥) ≤ (#‘𝐴))
71 xlemul1a 12156 . . . . . . . 8 ((((#‘𝑥) ∈ ℝ* ∧ (#‘𝐴) ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) ∧ (#‘𝑥) ≤ (#‘𝐴)) → ((#‘𝑥) ·e 𝐵) ≤ ((#‘𝐴) ·e 𝐵))
7238, 55, 61, 70, 71syl31anc 1369 . . . . . . 7 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((#‘𝑥) ·e 𝐵) ≤ ((#‘𝐴) ·e 𝐵))
7372ralrimiva 2995 . . . . . 6 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((#‘𝑥) ·e 𝐵) ≤ ((#‘𝐴) ·e 𝐵))
74 r19.29r 3102 . . . . . 6 ((∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((#‘𝑥) ·e 𝐵) ∧ ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((#‘𝑥) ·e 𝐵) ≤ ((#‘𝐴) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((#‘𝑥) ·e 𝐵) ∧ ((#‘𝑥) ·e 𝐵) ≤ ((#‘𝐴) ·e 𝐵)))
7554, 73, 74syl2anr 494 . . . . 5 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵))) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((#‘𝑥) ·e 𝐵) ∧ ((#‘𝑥) ·e 𝐵) ≤ ((#‘𝐴) ·e 𝐵)))
76 simpl 472 . . . . . . 7 ((𝑦 = ((#‘𝑥) ·e 𝐵) ∧ ((#‘𝑥) ·e 𝐵) ≤ ((#‘𝐴) ·e 𝐵)) → 𝑦 = ((#‘𝑥) ·e 𝐵))
77 simpr 476 . . . . . . 7 ((𝑦 = ((#‘𝑥) ·e 𝐵) ∧ ((#‘𝑥) ·e 𝐵) ≤ ((#‘𝐴) ·e 𝐵)) → ((#‘𝑥) ·e 𝐵) ≤ ((#‘𝐴) ·e 𝐵))
7876, 77eqbrtrd 4707 . . . . . 6 ((𝑦 = ((#‘𝑥) ·e 𝐵) ∧ ((#‘𝑥) ·e 𝐵) ≤ ((#‘𝐴) ·e 𝐵)) → 𝑦 ≤ ((#‘𝐴) ·e 𝐵))
7978rexlimivw 3058 . . . . 5 (∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((#‘𝑥) ·e 𝐵) ∧ ((#‘𝑥) ·e 𝐵) ≤ ((#‘𝐴) ·e 𝐵)) → 𝑦 ≤ ((#‘𝐴) ·e 𝐵))
8075, 79syl 17 . . . 4 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵))) → 𝑦 ≤ ((#‘𝐴) ·e 𝐵))
8180ralrimiva 2995 . . 3 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → ∀𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵))𝑦 ≤ ((#‘𝐴) ·e 𝐵))
82 pwidg 4206 . . . . . . . . . . 11 (𝐴 ∈ Fin → 𝐴 ∈ 𝒫 𝐴)
8382ancri 574 . . . . . . . . . 10 (𝐴 ∈ Fin → (𝐴 ∈ 𝒫 𝐴𝐴 ∈ Fin))
84 elin 3829 . . . . . . . . . 10 (𝐴 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝐴 ∈ 𝒫 𝐴𝐴 ∈ Fin))
8583, 84sylibr 224 . . . . . . . . 9 (𝐴 ∈ Fin → 𝐴 ∈ (𝒫 𝐴 ∩ Fin))
86 eqid 2651 . . . . . . . . . . 11 ((#‘𝐴) ·e 𝐵) = ((#‘𝐴) ·e 𝐵)
87 fveq2 6229 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (#‘𝑥) = (#‘𝐴))
8887oveq1d 6705 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → ((#‘𝑥) ·e 𝐵) = ((#‘𝐴) ·e 𝐵))
8988eqeq2d 2661 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (((#‘𝐴) ·e 𝐵) = ((#‘𝑥) ·e 𝐵) ↔ ((#‘𝐴) ·e 𝐵) = ((#‘𝐴) ·e 𝐵)))
9089rspcev 3340 . . . . . . . . . . 11 ((𝐴 ∈ (𝒫 𝐴 ∩ Fin) ∧ ((#‘𝐴) ·e 𝐵) = ((#‘𝐴) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((#‘𝐴) ·e 𝐵) = ((#‘𝑥) ·e 𝐵))
9186, 90mpan2 707 . . . . . . . . . 10 (𝐴 ∈ (𝒫 𝐴 ∩ Fin) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((#‘𝐴) ·e 𝐵) = ((#‘𝑥) ·e 𝐵))
92 ovex 6718 . . . . . . . . . . 11 ((#‘𝐴) ·e 𝐵) ∈ V
9344elrnmpt 5404 . . . . . . . . . . 11 (((#‘𝐴) ·e 𝐵) ∈ V → (((#‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((#‘𝐴) ·e 𝐵) = ((#‘𝑥) ·e 𝐵)))
9492, 93ax-mp 5 . . . . . . . . . 10 (((#‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((#‘𝐴) ·e 𝐵) = ((#‘𝑥) ·e 𝐵))
9591, 94sylibr 224 . . . . . . . . 9 (𝐴 ∈ (𝒫 𝐴 ∩ Fin) → ((#‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵)))
9685, 95syl 17 . . . . . . . 8 (𝐴 ∈ Fin → ((#‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵)))
9796adantl 481 . . . . . . 7 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ 𝐴 ∈ Fin) → ((#‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵)))
98 simplr 807 . . . . . . 7 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ 𝐴 ∈ Fin) → 𝑦 < ((#‘𝐴) ·e 𝐵))
99 breq2 4689 . . . . . . . 8 (𝑧 = ((#‘𝐴) ·e 𝐵) → (𝑦 < 𝑧𝑦 < ((#‘𝐴) ·e 𝐵)))
10099rspcev 3340 . . . . . . 7 ((((#‘𝐴) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵)) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵))𝑦 < 𝑧)
10197, 98, 100syl2anc 694 . . . . . 6 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ 𝐴 ∈ Fin) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵))𝑦 < 𝑧)
102 0elpw 4864 . . . . . . . . . . . 12 ∅ ∈ 𝒫 𝐴
103 0fin 8229 . . . . . . . . . . . 12 ∅ ∈ Fin
104 elin 3829 . . . . . . . . . . . 12 (∅ ∈ (𝒫 𝐴 ∩ Fin) ↔ (∅ ∈ 𝒫 𝐴 ∧ ∅ ∈ Fin))
105102, 103, 104mpbir2an 975 . . . . . . . . . . 11 ∅ ∈ (𝒫 𝐴 ∩ Fin)
106105a1i 11 . . . . . . . . . 10 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ∅ ∈ (𝒫 𝐴 ∩ Fin))
107 simpr 476 . . . . . . . . . . . 12 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → 𝐵 = 0)
108107oveq2d 6706 . . . . . . . . . . 11 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ((#‘∅) ·e 𝐵) = ((#‘∅) ·e 0))
109 hash0 13196 . . . . . . . . . . . . 13 (#‘∅) = 0
110109, 56eqeltri 2726 . . . . . . . . . . . 12 (#‘∅) ∈ ℝ*
111 xmul01 12135 . . . . . . . . . . . 12 ((#‘∅) ∈ ℝ* → ((#‘∅) ·e 0) = 0)
112110, 111ax-mp 5 . . . . . . . . . . 11 ((#‘∅) ·e 0) = 0
113108, 112syl6req 2702 . . . . . . . . . 10 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → 0 = ((#‘∅) ·e 𝐵))
114 fveq2 6229 . . . . . . . . . . . . 13 (𝑥 = ∅ → (#‘𝑥) = (#‘∅))
115114oveq1d 6705 . . . . . . . . . . . 12 (𝑥 = ∅ → ((#‘𝑥) ·e 𝐵) = ((#‘∅) ·e 𝐵))
116115eqeq2d 2661 . . . . . . . . . . 11 (𝑥 = ∅ → (0 = ((#‘𝑥) ·e 𝐵) ↔ 0 = ((#‘∅) ·e 𝐵)))
117116rspcev 3340 . . . . . . . . . 10 ((∅ ∈ (𝒫 𝐴 ∩ Fin) ∧ 0 = ((#‘∅) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 = ((#‘𝑥) ·e 𝐵))
118106, 113, 117syl2anc 694 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 = ((#‘𝑥) ·e 𝐵))
119 ovex 6718 . . . . . . . . . 10 ((#‘𝑥) ·e 𝐵) ∈ V
12044, 119elrnmpti 5408 . . . . . . . . 9 (0 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 = ((#‘𝑥) ·e 𝐵))
121118, 120sylibr 224 . . . . . . . 8 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → 0 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵)))
122 simpllr 815 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → 𝑦 < ((#‘𝐴) ·e 𝐵))
123107oveq2d 6706 . . . . . . . . . 10 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ((#‘𝐴) ·e 𝐵) = ((#‘𝐴) ·e 0))
12449ad4antr 769 . . . . . . . . . . 11 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → (#‘𝐴) ∈ ℝ*)
125 xmul01 12135 . . . . . . . . . . 11 ((#‘𝐴) ∈ ℝ* → ((#‘𝐴) ·e 0) = 0)
126124, 125syl 17 . . . . . . . . . 10 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ((#‘𝐴) ·e 0) = 0)
127123, 126eqtrd 2685 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ((#‘𝐴) ·e 𝐵) = 0)
128122, 127breqtrd 4711 . . . . . . . 8 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → 𝑦 < 0)
129 breq2 4689 . . . . . . . . 9 (𝑧 = 0 → (𝑦 < 𝑧𝑦 < 0))
130129rspcev 3340 . . . . . . . 8 ((0 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵)) ∧ 𝑦 < 0) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵))𝑦 < 𝑧)
131121, 128, 130syl2anc 694 . . . . . . 7 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = 0) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵))𝑦 < 𝑧)
132 simplr 807 . . . . . . . . . . . . . . 15 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (#‘𝑎) = 𝑛) → 𝑎 ∈ 𝒫 𝐴)
133 simpr 476 . . . . . . . . . . . . . . . . 17 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (#‘𝑎) = 𝑛) → (#‘𝑎) = 𝑛)
134 simp-4r 824 . . . . . . . . . . . . . . . . 17 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (#‘𝑎) = 𝑛) → 𝑛 ∈ ℕ)
135133, 134eqeltrd 2730 . . . . . . . . . . . . . . . 16 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (#‘𝑎) = 𝑛) → (#‘𝑎) ∈ ℕ)
136 nnnn0 11337 . . . . . . . . . . . . . . . . 17 ((#‘𝑎) ∈ ℕ → (#‘𝑎) ∈ ℕ0)
137 vex 3234 . . . . . . . . . . . . . . . . . 18 𝑎 ∈ V
138 hashclb 13187 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ V → (𝑎 ∈ Fin ↔ (#‘𝑎) ∈ ℕ0))
139137, 138ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ Fin ↔ (#‘𝑎) ∈ ℕ0)
140136, 139sylibr 224 . . . . . . . . . . . . . . . 16 ((#‘𝑎) ∈ ℕ → 𝑎 ∈ Fin)
141135, 140syl 17 . . . . . . . . . . . . . . 15 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (#‘𝑎) = 𝑛) → 𝑎 ∈ Fin)
142132, 141elind 3831 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (#‘𝑎) = 𝑛) → 𝑎 ∈ (𝒫 𝐴 ∩ Fin))
143 eqidd 2652 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (#‘𝑎) = 𝑛) → ((#‘𝑎) ·e 𝐵) = ((#‘𝑎) ·e 𝐵))
144 fveq2 6229 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (#‘𝑥) = (#‘𝑎))
145144oveq1d 6705 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → ((#‘𝑥) ·e 𝐵) = ((#‘𝑎) ·e 𝐵))
146145eqeq2d 2661 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → (((#‘𝑎) ·e 𝐵) = ((#‘𝑥) ·e 𝐵) ↔ ((#‘𝑎) ·e 𝐵) = ((#‘𝑎) ·e 𝐵)))
147146rspcev 3340 . . . . . . . . . . . . . 14 ((𝑎 ∈ (𝒫 𝐴 ∩ Fin) ∧ ((#‘𝑎) ·e 𝐵) = ((#‘𝑎) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((#‘𝑎) ·e 𝐵) = ((#‘𝑥) ·e 𝐵))
148142, 143, 147syl2anc 694 . . . . . . . . . . . . 13 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (#‘𝑎) = 𝑛) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((#‘𝑎) ·e 𝐵) = ((#‘𝑥) ·e 𝐵))
14944, 119elrnmpti 5408 . . . . . . . . . . . . 13 (((#‘𝑎) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((#‘𝑎) ·e 𝐵) = ((#‘𝑥) ·e 𝐵))
150148, 149sylibr 224 . . . . . . . . . . . 12 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (#‘𝑎) = 𝑛) → ((#‘𝑎) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵)))
151 simpllr 815 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (#‘𝑎) = 𝑛) → (𝑦 / 𝐵) < 𝑛)
152 simp-8r 832 . . . . . . . . . . . . . . 15 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (#‘𝑎) = 𝑛) → 𝑦 ∈ ℝ)
153134nnred 11073 . . . . . . . . . . . . . . 15 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (#‘𝑎) = 𝑛) → 𝑛 ∈ ℝ)
154 simp-5r 826 . . . . . . . . . . . . . . 15 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (#‘𝑎) = 𝑛) → 𝐵 ∈ ℝ+)
155152, 153, 154ltdivmul2d 11962 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (#‘𝑎) = 𝑛) → ((𝑦 / 𝐵) < 𝑛𝑦 < (𝑛 · 𝐵)))
156151, 155mpbid 222 . . . . . . . . . . . . 13 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (#‘𝑎) = 𝑛) → 𝑦 < (𝑛 · 𝐵))
157133oveq1d 6705 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (#‘𝑎) = 𝑛) → ((#‘𝑎) ·e 𝐵) = (𝑛 ·e 𝐵))
158154rpred 11910 . . . . . . . . . . . . . . 15 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (#‘𝑎) = 𝑛) → 𝐵 ∈ ℝ)
159 rexmul 12139 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑛 ·e 𝐵) = (𝑛 · 𝐵))
160153, 158, 159syl2anc 694 . . . . . . . . . . . . . 14 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (#‘𝑎) = 𝑛) → (𝑛 ·e 𝐵) = (𝑛 · 𝐵))
161157, 160eqtrd 2685 . . . . . . . . . . . . 13 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (#‘𝑎) = 𝑛) → ((#‘𝑎) ·e 𝐵) = (𝑛 · 𝐵))
162156, 161breqtrrd 4713 . . . . . . . . . . . 12 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (#‘𝑎) = 𝑛) → 𝑦 < ((#‘𝑎) ·e 𝐵))
163 breq2 4689 . . . . . . . . . . . . 13 (𝑧 = ((#‘𝑎) ·e 𝐵) → (𝑦 < 𝑧𝑦 < ((#‘𝑎) ·e 𝐵)))
164163rspcev 3340 . . . . . . . . . . . 12 ((((#‘𝑎) ·e 𝐵) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵)) ∧ 𝑦 < ((#‘𝑎) ·e 𝐵)) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵))𝑦 < 𝑧)
165150, 162, 164syl2anc 694 . . . . . . . . . . 11 ((((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) ∧ (#‘𝑎) = 𝑛) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵))𝑦 < 𝑧)
166165ex 449 . . . . . . . . . 10 (((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) ∧ 𝑎 ∈ 𝒫 𝐴) → ((#‘𝑎) = 𝑛 → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵))𝑦 < 𝑧))
167166rexlimdva 3060 . . . . . . . . 9 ((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ (𝑦 / 𝐵) < 𝑛) → (∃𝑎 ∈ 𝒫 𝐴(#‘𝑎) = 𝑛 → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵))𝑦 < 𝑧))
168167impr 648 . . . . . . . 8 ((((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) ∧ ((𝑦 / 𝐵) < 𝑛 ∧ ∃𝑎 ∈ 𝒫 𝐴(#‘𝑎) = 𝑛)) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵))𝑦 < 𝑧)
169 simp-4r 824 . . . . . . . . . . 11 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → 𝑦 ∈ ℝ)
170 simpr 476 . . . . . . . . . . 11 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
171169, 170rerpdivcld 11941 . . . . . . . . . 10 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → (𝑦 / 𝐵) ∈ ℝ)
172 arch 11327 . . . . . . . . . 10 ((𝑦 / 𝐵) ∈ ℝ → ∃𝑛 ∈ ℕ (𝑦 / 𝐵) < 𝑛)
173171, 172syl 17 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → ∃𝑛 ∈ ℕ (𝑦 / 𝐵) < 𝑛)
174 ishashinf 13285 . . . . . . . . . 10 𝐴 ∈ Fin → ∀𝑛 ∈ ℕ ∃𝑎 ∈ 𝒫 𝐴(#‘𝑎) = 𝑛)
175174ad2antlr 763 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → ∀𝑛 ∈ ℕ ∃𝑎 ∈ 𝒫 𝐴(#‘𝑎) = 𝑛)
176 r19.29r 3102 . . . . . . . . 9 ((∃𝑛 ∈ ℕ (𝑦 / 𝐵) < 𝑛 ∧ ∀𝑛 ∈ ℕ ∃𝑎 ∈ 𝒫 𝐴(#‘𝑎) = 𝑛) → ∃𝑛 ∈ ℕ ((𝑦 / 𝐵) < 𝑛 ∧ ∃𝑎 ∈ 𝒫 𝐴(#‘𝑎) = 𝑛))
177173, 175, 176syl2anc 694 . . . . . . . 8 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → ∃𝑛 ∈ ℕ ((𝑦 / 𝐵) < 𝑛 ∧ ∃𝑎 ∈ 𝒫 𝐴(#‘𝑎) = 𝑛))
178168, 177r19.29a 3107 . . . . . . 7 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 ∈ ℝ+) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵))𝑦 < 𝑧)
179 nfielex 8230 . . . . . . . . . . . 12 𝐴 ∈ Fin → ∃𝑙 𝑙𝐴)
180179adantr 480 . . . . . . . . . . 11 ((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) → ∃𝑙 𝑙𝐴)
181 snelpwi 4942 . . . . . . . . . . . . . . 15 (𝑙𝐴 → {𝑙} ∈ 𝒫 𝐴)
182 snfi 8079 . . . . . . . . . . . . . . 15 {𝑙} ∈ Fin
183181, 182jctir 560 . . . . . . . . . . . . . 14 (𝑙𝐴 → ({𝑙} ∈ 𝒫 𝐴 ∧ {𝑙} ∈ Fin))
184 elin 3829 . . . . . . . . . . . . . 14 ({𝑙} ∈ (𝒫 𝐴 ∩ Fin) ↔ ({𝑙} ∈ 𝒫 𝐴 ∧ {𝑙} ∈ Fin))
185183, 184sylibr 224 . . . . . . . . . . . . 13 (𝑙𝐴 → {𝑙} ∈ (𝒫 𝐴 ∩ Fin))
186185adantl 481 . . . . . . . . . . . 12 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → {𝑙} ∈ (𝒫 𝐴 ∩ Fin))
187 simplr 807 . . . . . . . . . . . . . 14 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → 𝐵 = +∞)
188187oveq2d 6706 . . . . . . . . . . . . 13 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → ((#‘{𝑙}) ·e 𝐵) = ((#‘{𝑙}) ·e +∞))
189 hashsng 13197 . . . . . . . . . . . . . . . 16 (𝑙𝐴 → (#‘{𝑙}) = 1)
190 1re 10077 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
19127, 190sselii 3633 . . . . . . . . . . . . . . . 16 1 ∈ ℝ*
192189, 191syl6eqel 2738 . . . . . . . . . . . . . . 15 (𝑙𝐴 → (#‘{𝑙}) ∈ ℝ*)
193 0lt1 10588 . . . . . . . . . . . . . . . 16 0 < 1
194193, 189syl5breqr 4723 . . . . . . . . . . . . . . 15 (𝑙𝐴 → 0 < (#‘{𝑙}))
195 xmulpnf1 12142 . . . . . . . . . . . . . . 15 (((#‘{𝑙}) ∈ ℝ* ∧ 0 < (#‘{𝑙})) → ((#‘{𝑙}) ·e +∞) = +∞)
196192, 194, 195syl2anc 694 . . . . . . . . . . . . . 14 (𝑙𝐴 → ((#‘{𝑙}) ·e +∞) = +∞)
197196adantl 481 . . . . . . . . . . . . 13 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → ((#‘{𝑙}) ·e +∞) = +∞)
198188, 197eqtr2d 2686 . . . . . . . . . . . 12 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → +∞ = ((#‘{𝑙}) ·e 𝐵))
199 fveq2 6229 . . . . . . . . . . . . . . 15 (𝑥 = {𝑙} → (#‘𝑥) = (#‘{𝑙}))
200199oveq1d 6705 . . . . . . . . . . . . . 14 (𝑥 = {𝑙} → ((#‘𝑥) ·e 𝐵) = ((#‘{𝑙}) ·e 𝐵))
201200eqeq2d 2661 . . . . . . . . . . . . 13 (𝑥 = {𝑙} → (+∞ = ((#‘𝑥) ·e 𝐵) ↔ +∞ = ((#‘{𝑙}) ·e 𝐵)))
202201rspcev 3340 . . . . . . . . . . . 12 (({𝑙} ∈ (𝒫 𝐴 ∩ Fin) ∧ +∞ = ((#‘{𝑙}) ·e 𝐵)) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((#‘𝑥) ·e 𝐵))
203186, 198, 202syl2anc 694 . . . . . . . . . . 11 (((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) ∧ 𝑙𝐴) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((#‘𝑥) ·e 𝐵))
204180, 203exlimddv 1903 . . . . . . . . . 10 ((¬ 𝐴 ∈ Fin ∧ 𝐵 = +∞) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((#‘𝑥) ·e 𝐵))
205204adantll 750 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = +∞) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((#‘𝑥) ·e 𝐵))
20644, 119elrnmpti 5408 . . . . . . . . 9 (+∞ ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵)) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)+∞ = ((#‘𝑥) ·e 𝐵))
207205, 206sylibr 224 . . . . . . . 8 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = +∞) → +∞ ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵)))
208 simp-4r 824 . . . . . . . . 9 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = +∞) → 𝑦 ∈ ℝ)
209 ltpnf 11992 . . . . . . . . 9 (𝑦 ∈ ℝ → 𝑦 < +∞)
210208, 209syl 17 . . . . . . . 8 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = +∞) → 𝑦 < +∞)
211 breq2 4689 . . . . . . . . 9 (𝑧 = +∞ → (𝑦 < 𝑧𝑦 < +∞))
212211rspcev 3340 . . . . . . . 8 ((+∞ ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵)) ∧ 𝑦 < +∞) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵))𝑦 < 𝑧)
213207, 210, 212syl2anc 694 . . . . . . 7 ((((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐵 = +∞) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵))𝑦 < 𝑧)
214 simp-4r 824 . . . . . . . 8 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) → 𝐵 ∈ (0[,]+∞))
215 elxrge02 29768 . . . . . . . 8 (𝐵 ∈ (0[,]+∞) ↔ (𝐵 = 0 ∨ 𝐵 ∈ ℝ+𝐵 = +∞))
216214, 215sylib 208 . . . . . . 7 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) → (𝐵 = 0 ∨ 𝐵 ∈ ℝ+𝐵 = +∞))
217131, 178, 213, 216mpjao3dan 1435 . . . . . 6 (((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) ∧ ¬ 𝐴 ∈ Fin) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵))𝑦 < 𝑧)
218101, 217pm2.61dan 849 . . . . 5 ((((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) ∧ 𝑦 < ((#‘𝐴) ·e 𝐵)) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵))𝑦 < 𝑧)
219218ex 449 . . . 4 (((𝐴𝑉𝐵 ∈ (0[,]+∞)) ∧ 𝑦 ∈ ℝ) → (𝑦 < ((#‘𝐴) ·e 𝐵) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵))𝑦 < 𝑧))
220219ralrimiva 2995 . . 3 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → ∀𝑦 ∈ ℝ (𝑦 < ((#‘𝐴) ·e 𝐵) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵))𝑦 < 𝑧))
221 supxr2 12182 . . 3 (((ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵)) ⊆ ℝ* ∧ ((#‘𝐴) ·e 𝐵) ∈ ℝ*) ∧ (∀𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵))𝑦 ≤ ((#‘𝐴) ·e 𝐵) ∧ ∀𝑦 ∈ ℝ (𝑦 < ((#‘𝐴) ·e 𝐵) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵))𝑦 < 𝑧))) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵)), ℝ*, < ) = ((#‘𝐴) ·e 𝐵))
22247, 50, 81, 220, 221syl22anc 1367 . 2 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((#‘𝑥) ·e 𝐵)), ℝ*, < ) = ((#‘𝐴) ·e 𝐵))
22325, 222eqtrd 2685 1 ((𝐴𝑉𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 = ((#‘𝐴) ·e 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3o 1053   = wceq 1523  wex 1744  wcel 2030  wnfc 2780  wral 2941  wrex 2942  Vcvv 3231  cun 3605  cin 3606  wss 3607  c0 3948  𝒫 cpw 4191  {csn 4210   class class class wbr 4685  cmpt 4762  ran crn 5144  wf 5922  cfv 5926  (class class class)co 6690  cdom 7995  Fincfn 7997  supcsup 8387  cr 9973  0cc0 9974  1c1 9975   · cmul 9979  +∞cpnf 10109  *cxr 10111   < clt 10112  cle 10113   / cdiv 10722  cn 11058  0cn0 11330  +crp 11870   ·e cxmu 11983  [,]cicc 12216  #chash 13157  s cress 15905   Σg cgsu 16148  *𝑠cxrs 16207  Mndcmnd 17341  .gcmg 17587  TopMndctmd 21921  Σ*cesum 30217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-ordt 16208  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-ps 17247  df-tsr 17248  df-plusf 17288  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-subrg 18826  df-abv 18865  df-lmod 18913  df-scaf 18914  df-sra 19220  df-rgmod 19221  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-tmd 21923  df-tgp 21924  df-tsms 21977  df-trg 22010  df-xms 22172  df-ms 22173  df-tms 22174  df-nm 22434  df-ngp 22435  df-nrg 22437  df-nlm 22438  df-ii 22727  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348  df-esum 30218
This theorem is referenced by:  esumpinfval  30263  esumpinfsum  30267
  Copyright terms: Public domain W3C validator