![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esum0 | Structured version Visualization version GIF version |
Description: Extended sum of zero. (Contributed by Thierry Arnoux, 3-Mar-2017.) |
Ref | Expression |
---|---|
esum0.k | ⊢ Ⅎ𝑘𝐴 |
Ref | Expression |
---|---|
esum0 | ⊢ (𝐴 ∈ 𝑉 → Σ*𝑘 ∈ 𝐴0 = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esum0.k | . . . 4 ⊢ Ⅎ𝑘𝐴 | |
2 | 1 | nfel1 2881 | . . 3 ⊢ Ⅎ𝑘 𝐴 ∈ 𝑉 |
3 | id 22 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
4 | 0e0iccpnf 12397 | . . . 4 ⊢ 0 ∈ (0[,]+∞) | |
5 | 4 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑘 ∈ 𝐴) → 0 ∈ (0[,]+∞)) |
6 | xrge0cmn 19911 | . . . . . 6 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
7 | cmnmnd 18329 | . . . . . 6 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) | |
8 | 6, 7 | ax-mp 5 | . . . . 5 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd |
9 | vex 3307 | . . . . 5 ⊢ 𝑥 ∈ V | |
10 | xrge00 29916 | . . . . . 6 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
11 | 10 | gsumz 17496 | . . . . 5 ⊢ (((ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd ∧ 𝑥 ∈ V) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 0)) = 0) |
12 | 8, 9, 11 | mp2an 710 | . . . 4 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 0)) = 0 |
13 | 12 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 0)) = 0) |
14 | 2, 1, 3, 5, 13 | esumval 30338 | . 2 ⊢ (𝐴 ∈ 𝑉 → Σ*𝑘 ∈ 𝐴0 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0), ℝ*, < )) |
15 | fconstmpt 5272 | . . . . . . 7 ⊢ ((𝒫 𝐴 ∩ Fin) × {0}) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) | |
16 | 15 | eqcomi 2733 | . . . . . 6 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = ((𝒫 𝐴 ∩ Fin) × {0}) |
17 | 0xr 10199 | . . . . . . . . 9 ⊢ 0 ∈ ℝ* | |
18 | 17 | rgenw 3026 | . . . . . . . 8 ⊢ ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 ∈ ℝ* |
19 | eqid 2724 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) | |
20 | 19 | fnmpt 6133 | . . . . . . . 8 ⊢ (∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 ∈ ℝ* → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) Fn (𝒫 𝐴 ∩ Fin)) |
21 | 18, 20 | ax-mp 5 | . . . . . . 7 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) Fn (𝒫 𝐴 ∩ Fin) |
22 | 0elpw 4939 | . . . . . . . . 9 ⊢ ∅ ∈ 𝒫 𝐴 | |
23 | 0fin 8304 | . . . . . . . . 9 ⊢ ∅ ∈ Fin | |
24 | elin 3904 | . . . . . . . . 9 ⊢ (∅ ∈ (𝒫 𝐴 ∩ Fin) ↔ (∅ ∈ 𝒫 𝐴 ∧ ∅ ∈ Fin)) | |
25 | 22, 23, 24 | mpbir2an 993 | . . . . . . . 8 ⊢ ∅ ∈ (𝒫 𝐴 ∩ Fin) |
26 | 25 | ne0ii 4031 | . . . . . . 7 ⊢ (𝒫 𝐴 ∩ Fin) ≠ ∅ |
27 | fconst5 6587 | . . . . . . 7 ⊢ (((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) Fn (𝒫 𝐴 ∩ Fin) ∧ (𝒫 𝐴 ∩ Fin) ≠ ∅) → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = ((𝒫 𝐴 ∩ Fin) × {0}) ↔ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0})) | |
28 | 21, 26, 27 | mp2an 710 | . . . . . 6 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = ((𝒫 𝐴 ∩ Fin) × {0}) ↔ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0}) |
29 | 16, 28 | mpbi 220 | . . . . 5 ⊢ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0} |
30 | 29 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0}) |
31 | 30 | supeq1d 8468 | . . 3 ⊢ (𝐴 ∈ 𝑉 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0), ℝ*, < ) = sup({0}, ℝ*, < )) |
32 | xrltso 12088 | . . . 4 ⊢ < Or ℝ* | |
33 | supsn 8494 | . . . 4 ⊢ (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0) | |
34 | 32, 17, 33 | mp2an 710 | . . 3 ⊢ sup({0}, ℝ*, < ) = 0 |
35 | 31, 34 | syl6eq 2774 | . 2 ⊢ (𝐴 ∈ 𝑉 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0), ℝ*, < ) = 0) |
36 | 14, 35 | eqtrd 2758 | 1 ⊢ (𝐴 ∈ 𝑉 → Σ*𝑘 ∈ 𝐴0 = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1596 ∈ wcel 2103 Ⅎwnfc 2853 ≠ wne 2896 ∀wral 3014 Vcvv 3304 ∩ cin 3679 ∅c0 4023 𝒫 cpw 4266 {csn 4285 ↦ cmpt 4837 Or wor 5138 × cxp 5216 ran crn 5219 Fn wfn 5996 (class class class)co 6765 Fincfn 8072 supcsup 8462 0cc0 10049 +∞cpnf 10184 ℝ*cxr 10186 < clt 10187 [,]cicc 12292 ↾s cress 15981 Σg cgsu 16224 ℝ*𝑠cxrs 16283 Mndcmnd 17416 CMndccmn 18314 Σ*cesum 30319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 ax-pre-sup 10127 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-fal 1602 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-iin 4631 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-se 5178 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-isom 6010 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-of 7014 df-om 7183 df-1st 7285 df-2nd 7286 df-supp 7416 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-1o 7680 df-oadd 7684 df-er 7862 df-map 7976 df-en 8073 df-dom 8074 df-sdom 8075 df-fin 8076 df-fsupp 8392 df-fi 8433 df-sup 8464 df-inf 8465 df-oi 8531 df-card 8878 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-div 10798 df-nn 11134 df-2 11192 df-3 11193 df-4 11194 df-5 11195 df-6 11196 df-7 11197 df-8 11198 df-9 11199 df-n0 11406 df-z 11491 df-dec 11607 df-uz 11801 df-q 11903 df-xadd 12061 df-ioo 12293 df-ioc 12294 df-ico 12295 df-icc 12296 df-fz 12441 df-fzo 12581 df-seq 12917 df-hash 13233 df-struct 15982 df-ndx 15983 df-slot 15984 df-base 15986 df-sets 15987 df-ress 15988 df-plusg 16077 df-mulr 16078 df-tset 16083 df-ple 16084 df-ds 16087 df-rest 16206 df-topn 16207 df-0g 16225 df-gsum 16226 df-topgen 16227 df-ordt 16284 df-xrs 16285 df-mre 16369 df-mrc 16370 df-acs 16372 df-ps 17322 df-tsr 17323 df-mgm 17364 df-sgrp 17406 df-mnd 17417 df-submnd 17458 df-cntz 17871 df-cmn 18316 df-fbas 19866 df-fg 19867 df-top 20822 df-topon 20839 df-topsp 20860 df-bases 20873 df-ntr 20947 df-nei 21025 df-cn 21154 df-haus 21242 df-fil 21772 df-fm 21864 df-flim 21865 df-flf 21866 df-tsms 22052 df-esum 30320 |
This theorem is referenced by: esumpad 30347 esumrnmpt2 30360 measvunilem0 30506 ddemeas 30529 |
Copyright terms: Public domain | W3C validator |