![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > estrccofval | Structured version Visualization version GIF version |
Description: Composition in the category of extensible structures. (Contributed by AV, 7-Mar-2020.) |
Ref | Expression |
---|---|
estrcbas.c | ⊢ 𝐶 = (ExtStrCat‘𝑈) |
estrcbas.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
estrcco.o | ⊢ · = (comp‘𝐶) |
Ref | Expression |
---|---|
estrccofval | ⊢ (𝜑 → · = (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑𝑚 (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑𝑚 (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | estrcbas.c | . . 3 ⊢ 𝐶 = (ExtStrCat‘𝑈) | |
2 | estrcbas.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
3 | eqid 2651 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
4 | 1, 2, 3 | estrchomfval 16813 | . . 3 ⊢ (𝜑 → (Hom ‘𝐶) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))) |
5 | eqidd 2652 | . . 3 ⊢ (𝜑 → (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑𝑚 (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑𝑚 (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓))) = (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑𝑚 (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑𝑚 (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓)))) | |
6 | 1, 2, 4, 5 | estrcval 16811 | . 2 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝑈〉, 〈(Hom ‘ndx), (Hom ‘𝐶)〉, 〈(comp‘ndx), (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑𝑚 (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑𝑚 (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓)))〉}) |
7 | catstr 16664 | . 2 ⊢ {〈(Base‘ndx), 𝑈〉, 〈(Hom ‘ndx), (Hom ‘𝐶)〉, 〈(comp‘ndx), (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑𝑚 (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑𝑚 (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓)))〉} Struct 〈1, ;15〉 | |
8 | ccoid 16124 | . 2 ⊢ comp = Slot (comp‘ndx) | |
9 | snsstp3 4381 | . 2 ⊢ {〈(comp‘ndx), (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑𝑚 (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑𝑚 (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓)))〉} ⊆ {〈(Base‘ndx), 𝑈〉, 〈(Hom ‘ndx), (Hom ‘𝐶)〉, 〈(comp‘ndx), (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑𝑚 (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑𝑚 (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓)))〉} | |
10 | sqxpexg 7005 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 × 𝑈) ∈ V) | |
11 | 2, 10 | syl 17 | . . 3 ⊢ (𝜑 → (𝑈 × 𝑈) ∈ V) |
12 | mpt2exga 7291 | . . 3 ⊢ (((𝑈 × 𝑈) ∈ V ∧ 𝑈 ∈ 𝑉) → (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑𝑚 (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑𝑚 (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓))) ∈ V) | |
13 | 11, 2, 12 | syl2anc 694 | . 2 ⊢ (𝜑 → (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑𝑚 (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑𝑚 (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓))) ∈ V) |
14 | estrcco.o | . 2 ⊢ · = (comp‘𝐶) | |
15 | 6, 7, 8, 9, 13, 14 | strfv3 15955 | 1 ⊢ (𝜑 → · = (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑𝑚 (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑𝑚 (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 Vcvv 3231 {ctp 4214 〈cop 4216 × cxp 5141 ∘ ccom 5147 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 1st c1st 7208 2nd c2nd 7209 ↑𝑚 cmap 7899 1c1 9975 5c5 11111 ;cdc 11531 ndxcnx 15901 Basecbs 15904 Hom chom 15999 compcco 16000 ExtStrCatcestrc 16809 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-fz 12365 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-hom 16013 df-cco 16014 df-estrc 16810 |
This theorem is referenced by: estrcco 16817 dfrngc2 42297 dfringc2 42343 |
Copyright terms: Public domain | W3C validator |