![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > erssxp | Structured version Visualization version GIF version |
Description: An equivalence relation is a subset of the cartesian product of the field. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
erssxp | ⊢ (𝑅 Er 𝐴 → 𝑅 ⊆ (𝐴 × 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | errel 7920 | . . 3 ⊢ (𝑅 Er 𝐴 → Rel 𝑅) | |
2 | relssdmrn 5817 | . . 3 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑅 Er 𝐴 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) |
4 | erdm 7921 | . . 3 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) | |
5 | errn 7933 | . . 3 ⊢ (𝑅 Er 𝐴 → ran 𝑅 = 𝐴) | |
6 | 4, 5 | xpeq12d 5297 | . 2 ⊢ (𝑅 Er 𝐴 → (dom 𝑅 × ran 𝑅) = (𝐴 × 𝐴)) |
7 | 3, 6 | sseqtrd 3782 | 1 ⊢ (𝑅 Er 𝐴 → 𝑅 ⊆ (𝐴 × 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3715 × cxp 5264 dom cdm 5266 ran crn 5267 Rel wrel 5271 Er wer 7908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-xp 5272 df-rel 5273 df-cnv 5274 df-dm 5276 df-rn 5277 df-er 7911 |
This theorem is referenced by: erex 7935 riiner 7987 efgval 18330 qtophaus 30212 |
Copyright terms: Public domain | W3C validator |