![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > errel | Structured version Visualization version GIF version |
Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
errel | ⊢ (𝑅 Er 𝐴 → Rel 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-er 7895 | . 2 ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) | |
2 | 1 | simp1bi 1138 | 1 ⊢ (𝑅 Er 𝐴 → Rel 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∪ cun 3719 ⊆ wss 3721 ◡ccnv 5248 dom cdm 5249 ∘ ccom 5253 Rel wrel 5254 Er wer 7892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 383 df-3an 1072 df-er 7895 |
This theorem is referenced by: ercl 7906 ersym 7907 ertr 7910 ercnv 7916 erssxp 7918 erth 7942 iiner 7970 frgpuplem 18391 ismntop 30404 topfneec 32681 prter3 34683 |
Copyright terms: Public domain | W3C validator |