![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > erngplus2-rN | Structured version Visualization version GIF version |
Description: Ring addition operation. (Contributed by NM, 10-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
erngset.h-r | ⊢ 𝐻 = (LHyp‘𝐾) |
erngset.t-r | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
erngset.e-r | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
erngset.d-r | ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) |
erng.p-r | ⊢ + = (+g‘𝐷) |
Ref | Expression |
---|---|
erngplus2-rN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → ((𝑈 + 𝑉)‘𝐹) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erngset.h-r | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | erngset.t-r | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | erngset.e-r | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
4 | erngset.d-r | . . . 4 ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) | |
5 | erng.p-r | . . . 4 ⊢ + = (+g‘𝐷) | |
6 | 1, 2, 3, 4, 5 | erngplus-rN 36613 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) → (𝑈 + 𝑉) = (𝑓 ∈ 𝑇 ↦ ((𝑈‘𝑓) ∘ (𝑉‘𝑓)))) |
7 | 6 | 3adantr3 1175 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → (𝑈 + 𝑉) = (𝑓 ∈ 𝑇 ↦ ((𝑈‘𝑓) ∘ (𝑉‘𝑓)))) |
8 | fveq2 6332 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑈‘𝑓) = (𝑈‘𝐹)) | |
9 | fveq2 6332 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑉‘𝑓) = (𝑉‘𝐹)) | |
10 | 8, 9 | coeq12d 5425 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑈‘𝑓) ∘ (𝑉‘𝑓)) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
11 | 10 | adantl 467 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) ∧ 𝑓 = 𝐹) → ((𝑈‘𝑓) ∘ (𝑉‘𝑓)) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
12 | simpr3 1236 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → 𝐹 ∈ 𝑇) | |
13 | fvex 6342 | . . . 4 ⊢ (𝑈‘𝐹) ∈ V | |
14 | fvex 6342 | . . . 4 ⊢ (𝑉‘𝐹) ∈ V | |
15 | 13, 14 | coex 7264 | . . 3 ⊢ ((𝑈‘𝐹) ∘ (𝑉‘𝐹)) ∈ V |
16 | 15 | a1i 11 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → ((𝑈‘𝐹) ∘ (𝑉‘𝐹)) ∈ V) |
17 | 7, 11, 12, 16 | fvmptd 6430 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → ((𝑈 + 𝑉)‘𝐹) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 Vcvv 3349 ↦ cmpt 4861 ∘ ccom 5253 ‘cfv 6031 (class class class)co 6792 +gcplusg 16148 HLchlt 35152 LHypclh 35785 LTrncltrn 35902 TEndoctendo 36554 EDRingRcedring-rN 36556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-n0 11494 df-z 11579 df-uz 11888 df-fz 12533 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-plusg 16161 df-mulr 16162 df-edring-rN 36558 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |