![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > erng1r | Structured version Visualization version GIF version |
Description: The division ring unit of an endomorphism ring. (Contributed by NM, 5-Nov-2013.) (Revised by Mario Carneiro, 23-Jun-2014.) |
Ref | Expression |
---|---|
erng1r.h | ⊢ 𝐻 = (LHyp‘𝐾) |
erng1r.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
erng1r.d | ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) |
erng1r.r | ⊢ 1 = (1r‘𝐷) |
Ref | Expression |
---|---|
erng1r | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 1 = ( I ↾ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erng1r.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | erng1r.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | eqid 2761 | . . . . 5 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
4 | 1, 2, 3 | tendoidcl 36578 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊)) |
5 | erng1r.d | . . . . 5 ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) | |
6 | eqid 2761 | . . . . 5 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
7 | 1, 2, 3, 5, 6 | erngbase 36610 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝐷) = ((TEndo‘𝐾)‘𝑊)) |
8 | 4, 7 | eleqtrrd 2843 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ (Base‘𝐷)) |
9 | eqid 2761 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
10 | eqid 2761 | . . . . 5 ⊢ (𝑓 ∈ 𝑇 ↦ ( I ↾ (Base‘𝐾))) = (𝑓 ∈ 𝑇 ↦ ( I ↾ (Base‘𝐾))) | |
11 | 9, 1, 2, 3, 10 | tendo1ne0 36637 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ≠ (𝑓 ∈ 𝑇 ↦ ( I ↾ (Base‘𝐾)))) |
12 | eqid 2761 | . . . . 5 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
13 | 9, 1, 2, 5, 10, 12 | erng0g 36803 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (0g‘𝐷) = (𝑓 ∈ 𝑇 ↦ ( I ↾ (Base‘𝐾)))) |
14 | 11, 13 | neeqtrrd 3007 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ≠ (0g‘𝐷)) |
15 | id 22 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
16 | eqid 2761 | . . . . . 6 ⊢ (.r‘𝐷) = (.r‘𝐷) | |
17 | 1, 2, 3, 5, 16 | erngmul 36615 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊) ∧ ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))) → (( I ↾ 𝑇)(.r‘𝐷)( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ ( I ↾ 𝑇))) |
18 | 15, 4, 4, 17 | syl12anc 1475 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (( I ↾ 𝑇)(.r‘𝐷)( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ ( I ↾ 𝑇))) |
19 | f1oi 6337 | . . . . 5 ⊢ ( I ↾ 𝑇):𝑇–1-1-onto→𝑇 | |
20 | f1of 6300 | . . . . 5 ⊢ (( I ↾ 𝑇):𝑇–1-1-onto→𝑇 → ( I ↾ 𝑇):𝑇⟶𝑇) | |
21 | fcoi2 6241 | . . . . 5 ⊢ (( I ↾ 𝑇):𝑇⟶𝑇 → (( I ↾ 𝑇) ∘ ( I ↾ 𝑇)) = ( I ↾ 𝑇)) | |
22 | 19, 20, 21 | mp2b 10 | . . . 4 ⊢ (( I ↾ 𝑇) ∘ ( I ↾ 𝑇)) = ( I ↾ 𝑇) |
23 | 18, 22 | syl6eq 2811 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (( I ↾ 𝑇)(.r‘𝐷)( I ↾ 𝑇)) = ( I ↾ 𝑇)) |
24 | 8, 14, 23 | 3jca 1123 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ( I ↾ 𝑇) ≠ (0g‘𝐷) ∧ (( I ↾ 𝑇)(.r‘𝐷)( I ↾ 𝑇)) = ( I ↾ 𝑇))) |
25 | 1, 5 | erngdv 36802 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ DivRing) |
26 | erng1r.r | . . . 4 ⊢ 1 = (1r‘𝐷) | |
27 | 6, 16, 12, 26 | drngid2 18986 | . . 3 ⊢ (𝐷 ∈ DivRing → ((( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ( I ↾ 𝑇) ≠ (0g‘𝐷) ∧ (( I ↾ 𝑇)(.r‘𝐷)( I ↾ 𝑇)) = ( I ↾ 𝑇)) ↔ 1 = ( I ↾ 𝑇))) |
28 | 25, 27 | syl 17 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ( I ↾ 𝑇) ≠ (0g‘𝐷) ∧ (( I ↾ 𝑇)(.r‘𝐷)( I ↾ 𝑇)) = ( I ↾ 𝑇)) ↔ 1 = ( I ↾ 𝑇))) |
29 | 24, 28 | mpbid 222 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 1 = ( I ↾ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2140 ≠ wne 2933 ↦ cmpt 4882 I cid 5174 ↾ cres 5269 ∘ ccom 5271 ⟶wf 6046 –1-1-onto→wf1o 6049 ‘cfv 6050 (class class class)co 6815 Basecbs 16080 .rcmulr 16165 0gc0g 16323 1rcur 18722 DivRingcdr 18970 HLchlt 35159 LHypclh 35792 LTrncltrn 35909 TEndoctendo 36561 EDRingcedring 36562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-riotaBAD 34761 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-iin 4676 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-tpos 7523 df-undef 7570 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-oadd 7735 df-er 7914 df-map 8028 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-2 11292 df-3 11293 df-n0 11506 df-z 11591 df-uz 11901 df-fz 12541 df-struct 16082 df-ndx 16083 df-slot 16084 df-base 16086 df-sets 16087 df-ress 16088 df-plusg 16177 df-mulr 16178 df-0g 16325 df-preset 17150 df-poset 17168 df-plt 17180 df-lub 17196 df-glb 17197 df-join 17198 df-meet 17199 df-p0 17261 df-p1 17262 df-lat 17268 df-clat 17330 df-mgm 17464 df-sgrp 17506 df-mnd 17517 df-grp 17647 df-minusg 17648 df-mgp 18711 df-ur 18723 df-ring 18770 df-oppr 18844 df-dvdsr 18862 df-unit 18863 df-invr 18893 df-dvr 18904 df-drng 18972 df-oposet 34985 df-ol 34987 df-oml 34988 df-covers 35075 df-ats 35076 df-atl 35107 df-cvlat 35131 df-hlat 35160 df-llines 35306 df-lplanes 35307 df-lvols 35308 df-lines 35309 df-psubsp 35311 df-pmap 35312 df-padd 35604 df-lhyp 35796 df-laut 35797 df-ldil 35912 df-ltrn 35913 df-trl 35968 df-tendo 36564 df-edring 36566 |
This theorem is referenced by: tendolinv 36915 tendorinv 36916 dvhlveclem 36918 |
Copyright terms: Public domain | W3C validator |