Step | Hyp | Ref
| Expression |
1 | | hashf 13290 |
. . . . 5
⊢
♯:V⟶(ℕ0 ∪ {+∞}) |
2 | | ffun 6197 |
. . . . 5
⊢
(♯:V⟶(ℕ0 ∪ {+∞}) → Fun
♯) |
3 | 1, 2 | ax-mp 5 |
. . . 4
⊢ Fun
♯ |
4 | | erdszelem.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ (1...𝑁)) |
5 | | erdsze.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) |
6 | | erdsze.f |
. . . . . 6
⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) |
7 | | erdszelem.k |
. . . . . 6
⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) |
8 | | erdszelem.o |
. . . . . 6
⊢ 𝑂 Or ℝ |
9 | 5, 6, 7, 8 | erdszelem5 31455 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → (𝐾‘𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)})) |
10 | 4, 9 | mpdan 705 |
. . . 4
⊢ (𝜑 → (𝐾‘𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)})) |
11 | | fvelima 6398 |
. . . 4
⊢ ((Fun
♯ ∧ (𝐾‘𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)})) → ∃𝑓 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} (♯‘𝑓) = (𝐾‘𝐴)) |
12 | 3, 10, 11 | sylancr 698 |
. . 3
⊢ (𝜑 → ∃𝑓 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} (♯‘𝑓) = (𝐾‘𝐴)) |
13 | | eqid 2748 |
. . . . . 6
⊢ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} |
14 | 13 | erdszelem1 31451 |
. . . . 5
⊢ (𝑓 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} ↔ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) |
15 | | fzfid 12937 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (1...𝐴) ∈ Fin) |
16 | | simplr1 1237 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝑓 ⊆ (1...𝐴)) |
17 | | ssfi 8333 |
. . . . . . . . . . 11
⊢
(((1...𝐴) ∈ Fin
∧ 𝑓 ⊆ (1...𝐴)) → 𝑓 ∈ Fin) |
18 | 15, 16, 17 | syl2anc 696 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝑓 ∈ Fin) |
19 | | hashcl 13310 |
. . . . . . . . . 10
⊢ (𝑓 ∈ Fin →
(♯‘𝑓) ∈
ℕ0) |
20 | 18, 19 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯‘𝑓) ∈
ℕ0) |
21 | 20 | nn0red 11515 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯‘𝑓) ∈ ℝ) |
22 | | eqid 2748 |
. . . . . . . . . . . . . . 15
⊢ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)} = {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)} |
23 | 22 | erdszelem2 31452 |
. . . . . . . . . . . . . 14
⊢ ((♯
“ {𝑦 ∈ 𝒫
(1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ∈ Fin ∧ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ⊆ ℕ) |
24 | 23 | simpri 481 |
. . . . . . . . . . . . 13
⊢ (♯
“ {𝑦 ∈ 𝒫
(1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ⊆ ℕ |
25 | | nnssre 11187 |
. . . . . . . . . . . . 13
⊢ ℕ
⊆ ℝ |
26 | 24, 25 | sstri 3741 |
. . . . . . . . . . . 12
⊢ (♯
“ {𝑦 ∈ 𝒫
(1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ⊆ ℝ |
27 | 26 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ⊆ ℝ) |
28 | | erdszelem.l |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 < 𝐵) |
29 | | elfznn 12534 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ∈ (1...𝑁) → 𝐴 ∈ ℕ) |
30 | 4, 29 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐴 ∈ ℕ) |
31 | 30 | nnred 11198 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴 ∈ ℝ) |
32 | | erdszelem.b |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐵 ∈ (1...𝑁)) |
33 | | elfznn 12534 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐵 ∈ (1...𝑁) → 𝐵 ∈ ℕ) |
34 | 32, 33 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐵 ∈ ℕ) |
35 | 34 | nnred 11198 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐵 ∈ ℝ) |
36 | 31, 35 | ltnled 10347 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
37 | 28, 36 | mpbid 222 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ¬ 𝐵 ≤ 𝐴) |
38 | | elfzle2 12509 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ∈ (1...𝐴) → 𝐵 ≤ 𝐴) |
39 | 37, 38 | nsyl 135 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ¬ 𝐵 ∈ (1...𝐴)) |
40 | 39 | ad2antrr 764 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ¬ 𝐵 ∈ (1...𝐴)) |
41 | 16, 40 | ssneldd 3735 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ¬ 𝐵 ∈ 𝑓) |
42 | 32 | ad2antrr 764 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝐵 ∈ (1...𝑁)) |
43 | | hashunsng 13344 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ (1...𝑁) → ((𝑓 ∈ Fin ∧ ¬ 𝐵 ∈ 𝑓) → (♯‘(𝑓 ∪ {𝐵})) = ((♯‘𝑓) + 1))) |
44 | 42, 43 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ((𝑓 ∈ Fin ∧ ¬ 𝐵 ∈ 𝑓) → (♯‘(𝑓 ∪ {𝐵})) = ((♯‘𝑓) + 1))) |
45 | 18, 41, 44 | mp2and 717 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯‘(𝑓 ∪ {𝐵})) = ((♯‘𝑓) + 1)) |
46 | | elfzelz 12506 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ∈ (1...𝑁) → 𝐴 ∈ ℤ) |
47 | 4, 46 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐴 ∈ ℤ) |
48 | | elfzelz 12506 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐵 ∈ (1...𝑁) → 𝐵 ∈ ℤ) |
49 | 32, 48 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐵 ∈ ℤ) |
50 | 31, 35, 28 | ltled 10348 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
51 | | eluz2 11856 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐵 ∈
(ℤ≥‘𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ≤ 𝐵)) |
52 | 47, 49, 50, 51 | syl3anbrc 1407 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘𝐴)) |
53 | | fzss2 12545 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐵 ∈
(ℤ≥‘𝐴) → (1...𝐴) ⊆ (1...𝐵)) |
54 | 52, 53 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (1...𝐴) ⊆ (1...𝐵)) |
55 | 54 | ad2antrr 764 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (1...𝐴) ⊆ (1...𝐵)) |
56 | 16, 55 | sstrd 3742 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝑓 ⊆ (1...𝐵)) |
57 | | elfz1end 12535 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐵 ∈ ℕ ↔ 𝐵 ∈ (1...𝐵)) |
58 | 34, 57 | sylib 208 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐵 ∈ (1...𝐵)) |
59 | 58 | ad2antrr 764 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝐵 ∈ (1...𝐵)) |
60 | 59 | snssd 4473 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → {𝐵} ⊆ (1...𝐵)) |
61 | 56, 60 | unssd 3920 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝑓 ∪ {𝐵}) ⊆ (1...𝐵)) |
62 | | simplr2 1239 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓))) |
63 | | f1f 6250 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐹:(1...𝑁)–1-1→ℝ → 𝐹:(1...𝑁)⟶ℝ) |
64 | 6, 63 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝐹:(1...𝑁)⟶ℝ) |
65 | 64 | ad2antrr 764 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝐹:(1...𝑁)⟶ℝ) |
66 | | elfzuz3 12503 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐴 ∈ (1...𝑁) → 𝑁 ∈ (ℤ≥‘𝐴)) |
67 | | fzss2 12545 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈
(ℤ≥‘𝐴) → (1...𝐴) ⊆ (1...𝑁)) |
68 | 4, 66, 67 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (1...𝐴) ⊆ (1...𝑁)) |
69 | 68 | ad2antrr 764 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (1...𝐴) ⊆ (1...𝑁)) |
70 | 16, 69 | sstrd 3742 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝑓 ⊆ (1...𝑁)) |
71 | | fzssuz 12546 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(1...𝑁) ⊆
(ℤ≥‘1) |
72 | | uzssz 11870 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(ℤ≥‘1) ⊆ ℤ |
73 | | zssre 11547 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ℤ
⊆ ℝ |
74 | 72, 73 | sstri 3741 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(ℤ≥‘1) ⊆ ℝ |
75 | 71, 74 | sstri 3741 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(1...𝑁) ⊆
ℝ |
76 | | ltso 10281 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ < Or
ℝ |
77 | | soss 5193 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((1...𝑁) ⊆
ℝ → ( < Or ℝ → < Or (1...𝑁))) |
78 | 75, 76, 77 | mp2 9 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ < Or
(1...𝑁) |
79 | | soisores 6728 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((( <
Or (1...𝑁) ∧ 𝑂 Or ℝ) ∧ (𝐹:(1...𝑁)⟶ℝ ∧ 𝑓 ⊆ (1...𝑁))) → ((𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ↔ ∀𝑧 ∈ 𝑓 ∀𝑤 ∈ 𝑓 (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
80 | 78, 8, 79 | mpanl12 720 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹:(1...𝑁)⟶ℝ ∧ 𝑓 ⊆ (1...𝑁)) → ((𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ↔ ∀𝑧 ∈ 𝑓 ∀𝑤 ∈ 𝑓 (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
81 | 65, 70, 80 | syl2anc 696 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ((𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ↔ ∀𝑧 ∈ 𝑓 ∀𝑤 ∈ 𝑓 (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
82 | 62, 81 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ∀𝑧 ∈ 𝑓 ∀𝑤 ∈ 𝑓 (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
83 | 82 | r19.21bi 3058 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → ∀𝑤 ∈ 𝑓 (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
84 | 16 | sselda 3732 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝑧 ∈ (1...𝐴)) |
85 | | elfzle2 12509 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 ∈ (1...𝐴) → 𝑧 ≤ 𝐴) |
86 | 84, 85 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝑧 ≤ 𝐴) |
87 | 70 | sselda 3732 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝑧 ∈ (1...𝑁)) |
88 | 75, 87 | sseldi 3730 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝑧 ∈ ℝ) |
89 | 4 | ad3antrrr 768 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝐴 ∈ (1...𝑁)) |
90 | 89, 29 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝐴 ∈ ℕ) |
91 | 90 | nnred 11198 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝐴 ∈ ℝ) |
92 | 88, 91 | lenltd 10346 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝑧 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑧)) |
93 | 86, 92 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → ¬ 𝐴 < 𝑧) |
94 | 62 | adantr 472 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓))) |
95 | | simplr3 1241 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝐴 ∈ 𝑓) |
96 | 95 | adantr 472 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝐴 ∈ 𝑓) |
97 | | simpr 479 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝑧 ∈ 𝑓) |
98 | | isorel 6727 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ (𝐴 ∈ 𝑓 ∧ 𝑧 ∈ 𝑓)) → (𝐴 < 𝑧 ↔ ((𝐹 ↾ 𝑓)‘𝐴)𝑂((𝐹 ↾ 𝑓)‘𝑧))) |
99 | | fvres 6356 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝐴 ∈ 𝑓 → ((𝐹 ↾ 𝑓)‘𝐴) = (𝐹‘𝐴)) |
100 | | fvres 6356 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 ∈ 𝑓 → ((𝐹 ↾ 𝑓)‘𝑧) = (𝐹‘𝑧)) |
101 | 99, 100 | breqan12d 4808 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐴 ∈ 𝑓 ∧ 𝑧 ∈ 𝑓) → (((𝐹 ↾ 𝑓)‘𝐴)𝑂((𝐹 ↾ 𝑓)‘𝑧) ↔ (𝐹‘𝐴)𝑂(𝐹‘𝑧))) |
102 | 101 | adantl 473 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ (𝐴 ∈ 𝑓 ∧ 𝑧 ∈ 𝑓)) → (((𝐹 ↾ 𝑓)‘𝐴)𝑂((𝐹 ↾ 𝑓)‘𝑧) ↔ (𝐹‘𝐴)𝑂(𝐹‘𝑧))) |
103 | 98, 102 | bitrd 268 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ (𝐴 ∈ 𝑓 ∧ 𝑧 ∈ 𝑓)) → (𝐴 < 𝑧 ↔ (𝐹‘𝐴)𝑂(𝐹‘𝑧))) |
104 | 94, 96, 97, 103 | syl12anc 1461 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝐴 < 𝑧 ↔ (𝐹‘𝐴)𝑂(𝐹‘𝑧))) |
105 | 93, 104 | mtbid 313 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → ¬ (𝐹‘𝐴)𝑂(𝐹‘𝑧)) |
106 | | simplr 809 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝐹‘𝐴)𝑂(𝐹‘𝐵)) |
107 | 65 | adantr 472 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝐹:(1...𝑁)⟶ℝ) |
108 | 107, 87 | ffvelrnd 6511 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝐹‘𝑧) ∈ ℝ) |
109 | 107, 89 | ffvelrnd 6511 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝐹‘𝐴) ∈ ℝ) |
110 | 42 | adantr 472 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → 𝐵 ∈ (1...𝑁)) |
111 | 107, 110 | ffvelrnd 6511 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝐹‘𝐵) ∈ ℝ) |
112 | | sotr2 5204 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑂 Or ℝ ∧ ((𝐹‘𝑧) ∈ ℝ ∧ (𝐹‘𝐴) ∈ ℝ ∧ (𝐹‘𝐵) ∈ ℝ)) → ((¬ (𝐹‘𝐴)𝑂(𝐹‘𝑧) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐹‘𝑧)𝑂(𝐹‘𝐵))) |
113 | 8, 112 | mpan 708 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐹‘𝑧) ∈ ℝ ∧ (𝐹‘𝐴) ∈ ℝ ∧ (𝐹‘𝐵) ∈ ℝ) → ((¬ (𝐹‘𝐴)𝑂(𝐹‘𝑧) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐹‘𝑧)𝑂(𝐹‘𝐵))) |
114 | 108, 109,
111, 113 | syl3anc 1463 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → ((¬ (𝐹‘𝐴)𝑂(𝐹‘𝑧) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐹‘𝑧)𝑂(𝐹‘𝐵))) |
115 | 105, 106,
114 | mp2and 717 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝐹‘𝑧)𝑂(𝐹‘𝐵)) |
116 | 115 | a1d 25 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝐵))) |
117 | | elsni 4326 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 ∈ {𝐵} → 𝑤 = 𝐵) |
118 | 117 | fveq2d 6344 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 ∈ {𝐵} → (𝐹‘𝑤) = (𝐹‘𝐵)) |
119 | 118 | breq2d 4804 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 ∈ {𝐵} → ((𝐹‘𝑧)𝑂(𝐹‘𝑤) ↔ (𝐹‘𝑧)𝑂(𝐹‘𝐵))) |
120 | 119 | imbi2d 329 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 ∈ {𝐵} → ((𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)) ↔ (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝐵)))) |
121 | 116, 120 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → (𝑤 ∈ {𝐵} → (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
122 | 121 | ralrimiv 3091 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → ∀𝑤 ∈ {𝐵} (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
123 | | ralunb 3925 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑤 ∈
(𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)) ↔ (∀𝑤 ∈ 𝑓 (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)) ∧ ∀𝑤 ∈ {𝐵} (𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
124 | 83, 122, 123 | sylanbrc 701 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑧 ∈ 𝑓) → ∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
125 | 124 | ralrimiva 3092 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ∀𝑧 ∈ 𝑓 ∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
126 | 61 | sselda 3732 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (𝑓 ∪ {𝐵})) → 𝑤 ∈ (1...𝐵)) |
127 | | elfzle2 12509 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑤 ∈ (1...𝐵) → 𝑤 ≤ 𝐵) |
128 | 127 | adantl 473 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (1...𝐵)) → 𝑤 ≤ 𝐵) |
129 | | elfzelz 12506 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑤 ∈ (1...𝐵) → 𝑤 ∈ ℤ) |
130 | 129 | zred 11645 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑤 ∈ (1...𝐵) → 𝑤 ∈ ℝ) |
131 | 130 | adantl 473 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (1...𝐵)) → 𝑤 ∈ ℝ) |
132 | 35 | ad3antrrr 768 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (1...𝐵)) → 𝐵 ∈ ℝ) |
133 | 131, 132 | lenltd 10346 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (1...𝐵)) → (𝑤 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑤)) |
134 | 128, 133 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (1...𝐵)) → ¬ 𝐵 < 𝑤) |
135 | 126, 134 | syldan 488 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (𝑓 ∪ {𝐵})) → ¬ 𝐵 < 𝑤) |
136 | 135 | pm2.21d 118 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) ∧ 𝑤 ∈ (𝑓 ∪ {𝐵})) → (𝐵 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
137 | 136 | ralrimiva 3092 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝐵 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
138 | | elsni 4326 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 ∈ {𝐵} → 𝑧 = 𝐵) |
139 | 138 | breq1d 4802 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ {𝐵} → (𝑧 < 𝑤 ↔ 𝐵 < 𝑤)) |
140 | 139 | imbi1d 330 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ {𝐵} → ((𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)) ↔ (𝐵 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
141 | 140 | ralbidv 3112 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ {𝐵} → (∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)) ↔ ∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝐵 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
142 | 137, 141 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝑧 ∈ {𝐵} → ∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
143 | 142 | ralrimiv 3091 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ∀𝑧 ∈ {𝐵}∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
144 | | ralunb 3925 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑧 ∈
(𝑓 ∪ {𝐵})∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)) ↔ (∀𝑧 ∈ 𝑓 ∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)) ∧ ∀𝑧 ∈ {𝐵}∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
145 | 125, 143,
144 | sylanbrc 701 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ∀𝑧 ∈ (𝑓 ∪ {𝐵})∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤))) |
146 | 42 | snssd 4473 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → {𝐵} ⊆ (1...𝑁)) |
147 | 70, 146 | unssd 3920 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝑓 ∪ {𝐵}) ⊆ (1...𝑁)) |
148 | | soisores 6728 |
. . . . . . . . . . . . . . . . . 18
⊢ ((( <
Or (1...𝑁) ∧ 𝑂 Or ℝ) ∧ (𝐹:(1...𝑁)⟶ℝ ∧ (𝑓 ∪ {𝐵}) ⊆ (1...𝑁))) → ((𝐹 ↾ (𝑓 ∪ {𝐵})) Isom < , 𝑂 ((𝑓 ∪ {𝐵}), (𝐹 “ (𝑓 ∪ {𝐵}))) ↔ ∀𝑧 ∈ (𝑓 ∪ {𝐵})∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
149 | 78, 8, 148 | mpanl12 720 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹:(1...𝑁)⟶ℝ ∧ (𝑓 ∪ {𝐵}) ⊆ (1...𝑁)) → ((𝐹 ↾ (𝑓 ∪ {𝐵})) Isom < , 𝑂 ((𝑓 ∪ {𝐵}), (𝐹 “ (𝑓 ∪ {𝐵}))) ↔ ∀𝑧 ∈ (𝑓 ∪ {𝐵})∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
150 | 65, 147, 149 | syl2anc 696 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ((𝐹 ↾ (𝑓 ∪ {𝐵})) Isom < , 𝑂 ((𝑓 ∪ {𝐵}), (𝐹 “ (𝑓 ∪ {𝐵}))) ↔ ∀𝑧 ∈ (𝑓 ∪ {𝐵})∀𝑤 ∈ (𝑓 ∪ {𝐵})(𝑧 < 𝑤 → (𝐹‘𝑧)𝑂(𝐹‘𝑤)))) |
151 | 145, 150 | mpbird 247 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐹 ↾ (𝑓 ∪ {𝐵})) Isom < , 𝑂 ((𝑓 ∪ {𝐵}), (𝐹 “ (𝑓 ∪ {𝐵})))) |
152 | | ssun2 3908 |
. . . . . . . . . . . . . . . 16
⊢ {𝐵} ⊆ (𝑓 ∪ {𝐵}) |
153 | | snssg 4447 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ∈ (1...𝐵) → (𝐵 ∈ (𝑓 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝑓 ∪ {𝐵}))) |
154 | 59, 153 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐵 ∈ (𝑓 ∪ {𝐵}) ↔ {𝐵} ⊆ (𝑓 ∪ {𝐵}))) |
155 | 152, 154 | mpbiri 248 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → 𝐵 ∈ (𝑓 ∪ {𝐵})) |
156 | 22 | erdszelem1 31451 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∪ {𝐵}) ∈ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)} ↔ ((𝑓 ∪ {𝐵}) ⊆ (1...𝐵) ∧ (𝐹 ↾ (𝑓 ∪ {𝐵})) Isom < , 𝑂 ((𝑓 ∪ {𝐵}), (𝐹 “ (𝑓 ∪ {𝐵}))) ∧ 𝐵 ∈ (𝑓 ∪ {𝐵}))) |
157 | 61, 151, 155, 156 | syl3anbrc 1407 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝑓 ∪ {𝐵}) ∈ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) |
158 | | vex 3331 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑓 ∈ V |
159 | | snex 5045 |
. . . . . . . . . . . . . . . . 17
⊢ {𝐵} ∈ V |
160 | 158, 159 | unex 7109 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 ∪ {𝐵}) ∈ V |
161 | 1 | fdmi 6201 |
. . . . . . . . . . . . . . . 16
⊢ dom
♯ = V |
162 | 160, 161 | eleqtrri 2826 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∪ {𝐵}) ∈ dom ♯ |
163 | | funfvima 6643 |
. . . . . . . . . . . . . . 15
⊢ ((Fun
♯ ∧ (𝑓 ∪
{𝐵}) ∈ dom ♯)
→ ((𝑓 ∪ {𝐵}) ∈ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)} → (♯‘(𝑓 ∪ {𝐵})) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}))) |
164 | 3, 162, 163 | mp2an 710 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∪ {𝐵}) ∈ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)} → (♯‘(𝑓 ∪ {𝐵})) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)})) |
165 | 157, 164 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯‘(𝑓 ∪ {𝐵})) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)})) |
166 | 45, 165 | eqeltrrd 2828 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ((♯‘𝑓) + 1) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)})) |
167 | | ne0i 4052 |
. . . . . . . . . . . 12
⊢
(((♯‘𝑓)
+ 1) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) → (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ≠ ∅) |
168 | 166, 167 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ≠ ∅) |
169 | 23 | simpli 476 |
. . . . . . . . . . . 12
⊢ (♯
“ {𝑦 ∈ 𝒫
(1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ∈ Fin |
170 | | fimaxre2 11132 |
. . . . . . . . . . . 12
⊢
(((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ⊆ ℝ ∧ (♯ “
{𝑦 ∈ 𝒫
(1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ∈ Fin) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)})𝑤 ≤ 𝑧) |
171 | 27, 169, 170 | sylancl 697 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ∃𝑧 ∈ ℝ ∀𝑤 ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)})𝑤 ≤ 𝑧) |
172 | | suprub 11147 |
. . . . . . . . . . 11
⊢
((((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ⊆ ℝ ∧ (♯ “
{𝑦 ∈ 𝒫
(1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}) ≠ ∅ ∧ ∃𝑧 ∈ ℝ ∀𝑤 ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)})𝑤 ≤ 𝑧) ∧ ((♯‘𝑓) + 1) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)})) → ((♯‘𝑓) + 1) ≤ sup((♯ “
{𝑦 ∈ 𝒫
(1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}), ℝ, < )) |
173 | 27, 168, 171, 166, 172 | syl31anc 1466 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ((♯‘𝑓) + 1) ≤ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}), ℝ, < )) |
174 | 5, 6, 7 | erdszelem3 31453 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ (1...𝑁) → (𝐾‘𝐵) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}), ℝ, < )) |
175 | 32, 174 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐾‘𝐵) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}), ℝ, < )) |
176 | 175 | ad2antrr 764 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐾‘𝐵) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐵) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐵 ∈ 𝑦)}), ℝ, < )) |
177 | 173, 176 | breqtrrd 4820 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ((♯‘𝑓) + 1) ≤ (𝐾‘𝐵)) |
178 | 5, 6, 7, 8 | erdszelem6 31456 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾:(1...𝑁)⟶ℕ) |
179 | 178, 32 | ffvelrnd 6511 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐾‘𝐵) ∈ ℕ) |
180 | 179 | ad2antrr 764 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐾‘𝐵) ∈ ℕ) |
181 | 180 | nnnn0d 11514 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (𝐾‘𝐵) ∈
ℕ0) |
182 | | nn0ltp1le 11598 |
. . . . . . . . . 10
⊢
(((♯‘𝑓)
∈ ℕ0 ∧ (𝐾‘𝐵) ∈ ℕ0) →
((♯‘𝑓) <
(𝐾‘𝐵) ↔ ((♯‘𝑓) + 1) ≤ (𝐾‘𝐵))) |
183 | 20, 181, 182 | syl2anc 696 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → ((♯‘𝑓) < (𝐾‘𝐵) ↔ ((♯‘𝑓) + 1) ≤ (𝐾‘𝐵))) |
184 | 177, 183 | mpbird 247 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯‘𝑓) < (𝐾‘𝐵)) |
185 | 21, 184 | ltned 10336 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) ∧ (𝐹‘𝐴)𝑂(𝐹‘𝐵)) → (♯‘𝑓) ≠ (𝐾‘𝐵)) |
186 | 185 | ex 449 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) → ((𝐹‘𝐴)𝑂(𝐹‘𝐵) → (♯‘𝑓) ≠ (𝐾‘𝐵))) |
187 | | neeq1 2982 |
. . . . . . 7
⊢
((♯‘𝑓) =
(𝐾‘𝐴) → ((♯‘𝑓) ≠ (𝐾‘𝐵) ↔ (𝐾‘𝐴) ≠ (𝐾‘𝐵))) |
188 | 187 | imbi2d 329 |
. . . . . 6
⊢
((♯‘𝑓) =
(𝐾‘𝐴) → (((𝐹‘𝐴)𝑂(𝐹‘𝐵) → (♯‘𝑓) ≠ (𝐾‘𝐵)) ↔ ((𝐹‘𝐴)𝑂(𝐹‘𝐵) → (𝐾‘𝐴) ≠ (𝐾‘𝐵)))) |
189 | 186, 188 | syl5ibcom 235 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑓) Isom < , 𝑂 (𝑓, (𝐹 “ 𝑓)) ∧ 𝐴 ∈ 𝑓)) → ((♯‘𝑓) = (𝐾‘𝐴) → ((𝐹‘𝐴)𝑂(𝐹‘𝐵) → (𝐾‘𝐴) ≠ (𝐾‘𝐵)))) |
190 | 14, 189 | sylan2b 493 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) → ((♯‘𝑓) = (𝐾‘𝐴) → ((𝐹‘𝐴)𝑂(𝐹‘𝐵) → (𝐾‘𝐴) ≠ (𝐾‘𝐵)))) |
191 | 190 | rexlimdva 3157 |
. . 3
⊢ (𝜑 → (∃𝑓 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} (♯‘𝑓) = (𝐾‘𝐴) → ((𝐹‘𝐴)𝑂(𝐹‘𝐵) → (𝐾‘𝐴) ≠ (𝐾‘𝐵)))) |
192 | 12, 191 | mpd 15 |
. 2
⊢ (𝜑 → ((𝐹‘𝐴)𝑂(𝐹‘𝐵) → (𝐾‘𝐴) ≠ (𝐾‘𝐵))) |
193 | 192 | necon2bd 2936 |
1
⊢ (𝜑 → ((𝐾‘𝐴) = (𝐾‘𝐵) → ¬ (𝐹‘𝐴)𝑂(𝐹‘𝐵))) |