![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > erdszelem1 | Structured version Visualization version GIF version |
Description: Lemma for erdsze 31310. (Contributed by Mario Carneiro, 22-Jan-2015.) |
Ref | Expression |
---|---|
erdszelem1.1 | ⊢ 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} |
Ref | Expression |
---|---|
erdszelem1 | ⊢ (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)) ∧ 𝐴 ∈ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 6718 | . . . 4 ⊢ (1...𝐴) ∈ V | |
2 | 1 | elpw2 4858 | . . 3 ⊢ (𝑋 ∈ 𝒫 (1...𝐴) ↔ 𝑋 ⊆ (1...𝐴)) |
3 | 2 | anbi1i 731 | . 2 ⊢ ((𝑋 ∈ 𝒫 (1...𝐴) ∧ ((𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)) ∧ 𝐴 ∈ 𝑋)) ↔ (𝑋 ⊆ (1...𝐴) ∧ ((𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)) ∧ 𝐴 ∈ 𝑋))) |
4 | reseq2 5423 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (𝐹 ↾ 𝑦) = (𝐹 ↾ 𝑋)) | |
5 | isoeq1 6607 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑦) = (𝐹 ↾ 𝑋) → ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ↔ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)))) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝑦 = 𝑋 → ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ↔ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)))) |
7 | isoeq4 6610 | . . . . 5 ⊢ (𝑦 = 𝑋 → ((𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ↔ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑦)))) | |
8 | imaeq2 5497 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (𝐹 “ 𝑦) = (𝐹 “ 𝑋)) | |
9 | isoeq5 6611 | . . . . . 6 ⊢ ((𝐹 “ 𝑦) = (𝐹 “ 𝑋) → ((𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑦)) ↔ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)))) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝑦 = 𝑋 → ((𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑦)) ↔ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)))) |
11 | 6, 7, 10 | 3bitrd 294 | . . . 4 ⊢ (𝑦 = 𝑋 → ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ↔ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)))) |
12 | eleq2 2719 | . . . 4 ⊢ (𝑦 = 𝑋 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑋)) | |
13 | 11, 12 | anbi12d 747 | . . 3 ⊢ (𝑦 = 𝑋 → (((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦) ↔ ((𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)) ∧ 𝐴 ∈ 𝑋))) |
14 | erdszelem1.1 | . . 3 ⊢ 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} | |
15 | 13, 14 | elrab2 3399 | . 2 ⊢ (𝑋 ∈ 𝑆 ↔ (𝑋 ∈ 𝒫 (1...𝐴) ∧ ((𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)) ∧ 𝐴 ∈ 𝑋))) |
16 | 3anass 1059 | . 2 ⊢ ((𝑋 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)) ∧ 𝐴 ∈ 𝑋) ↔ (𝑋 ⊆ (1...𝐴) ∧ ((𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)) ∧ 𝐴 ∈ 𝑋))) | |
17 | 3, 15, 16 | 3bitr4i 292 | 1 ⊢ (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)) ∧ 𝐴 ∈ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 {crab 2945 ⊆ wss 3607 𝒫 cpw 4191 ↾ cres 5145 “ cima 5146 Isom wiso 5927 (class class class)co 6690 1c1 9975 < clt 10112 ...cfz 12364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-ov 6693 |
This theorem is referenced by: erdszelem2 31300 erdszelem4 31302 erdszelem7 31305 erdszelem8 31306 |
Copyright terms: Public domain | W3C validator |