Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlkneqlen Structured version   Visualization version   GIF version

Theorem erclwwlkneqlen 27199
 Description: If two classes are equivalent regarding ∼, then they are words of the same length. (Contributed by Alexander van der Vekens, 8-Apr-2018.) (Revised by AV, 30-Apr-2021.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlkneqlen ((𝑇𝑋𝑈𝑌) → (𝑇 𝑈 → (♯‘𝑇) = (♯‘𝑈)))
Distinct variable groups:   𝑡,𝑊,𝑢   𝑡,𝑁,𝑢   𝑇,𝑛,𝑡,𝑢   𝑈,𝑛,𝑡,𝑢   𝑛,𝑊   𝑛,𝑋   𝑛,𝑌
Allowed substitution hints:   (𝑢,𝑡,𝑛)   𝐺(𝑢,𝑡,𝑛)   𝑁(𝑛)   𝑋(𝑢,𝑡)   𝑌(𝑢,𝑡)

Proof of Theorem erclwwlkneqlen
StepHypRef Expression
1 erclwwlkn.w . . 3 𝑊 = (𝑁 ClWWalksN 𝐺)
2 erclwwlkn.r . . 3 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
31, 2erclwwlkneq 27198 . 2 ((𝑇𝑋𝑈𝑌) → (𝑇 𝑈 ↔ (𝑇𝑊𝑈𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑇 = (𝑈 cyclShift 𝑛))))
4 fveq2 6352 . . . . . 6 (𝑇 = (𝑈 cyclShift 𝑛) → (♯‘𝑇) = (♯‘(𝑈 cyclShift 𝑛)))
5 eqid 2760 . . . . . . . . . 10 (Vtx‘𝐺) = (Vtx‘𝐺)
65clwwlknwrd 27162 . . . . . . . . 9 (𝑈 ∈ (𝑁 ClWWalksN 𝐺) → 𝑈 ∈ Word (Vtx‘𝐺))
76, 1eleq2s 2857 . . . . . . . 8 (𝑈𝑊𝑈 ∈ Word (Vtx‘𝐺))
87adantl 473 . . . . . . 7 ((𝑇𝑊𝑈𝑊) → 𝑈 ∈ Word (Vtx‘𝐺))
9 elfzelz 12535 . . . . . . 7 (𝑛 ∈ (0...𝑁) → 𝑛 ∈ ℤ)
10 cshwlen 13745 . . . . . . 7 ((𝑈 ∈ Word (Vtx‘𝐺) ∧ 𝑛 ∈ ℤ) → (♯‘(𝑈 cyclShift 𝑛)) = (♯‘𝑈))
118, 9, 10syl2an 495 . . . . . 6 (((𝑇𝑊𝑈𝑊) ∧ 𝑛 ∈ (0...𝑁)) → (♯‘(𝑈 cyclShift 𝑛)) = (♯‘𝑈))
124, 11sylan9eqr 2816 . . . . 5 ((((𝑇𝑊𝑈𝑊) ∧ 𝑛 ∈ (0...𝑁)) ∧ 𝑇 = (𝑈 cyclShift 𝑛)) → (♯‘𝑇) = (♯‘𝑈))
1312ex 449 . . . 4 (((𝑇𝑊𝑈𝑊) ∧ 𝑛 ∈ (0...𝑁)) → (𝑇 = (𝑈 cyclShift 𝑛) → (♯‘𝑇) = (♯‘𝑈)))
1413rexlimdva 3169 . . 3 ((𝑇𝑊𝑈𝑊) → (∃𝑛 ∈ (0...𝑁)𝑇 = (𝑈 cyclShift 𝑛) → (♯‘𝑇) = (♯‘𝑈)))
15143impia 1110 . 2 ((𝑇𝑊𝑈𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑇 = (𝑈 cyclShift 𝑛)) → (♯‘𝑇) = (♯‘𝑈))
163, 15syl6bi 243 1 ((𝑇𝑋𝑈𝑌) → (𝑇 𝑈 → (♯‘𝑇) = (♯‘𝑈)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  ∃wrex 3051   class class class wbr 4804  {copab 4864  ‘cfv 6049  (class class class)co 6813  0cc0 10128  ℤcz 11569  ...cfz 12519  ♯chash 13311  Word cword 13477   cyclShift ccsh 13734  Vtxcvtx 26073   ClWWalksN cclwwlkn 27147 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-inf 8514  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-hash 13312  df-word 13485  df-concat 13487  df-substr 13489  df-csh 13735  df-clwwlk 27105  df-clwwlkn 27149 This theorem is referenced by:  erclwwlknsym  27201  erclwwlkntr  27202
 Copyright terms: Public domain W3C validator