MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlkneq Structured version   Visualization version   GIF version

Theorem erclwwlkneq 27222
Description: Two classes are equivalent regarding if both are words of the same fixed length and one is the other cyclically shifted. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by AV, 30-Apr-2021.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlkneq ((𝑇𝑋𝑈𝑌) → (𝑇 𝑈 ↔ (𝑇𝑊𝑈𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑇 = (𝑈 cyclShift 𝑛))))
Distinct variable groups:   𝑡,𝑊,𝑢   𝑡,𝑁,𝑢   𝑇,𝑛,𝑡,𝑢   𝑈,𝑛,𝑡,𝑢
Allowed substitution hints:   (𝑢,𝑡,𝑛)   𝐺(𝑢,𝑡,𝑛)   𝑁(𝑛)   𝑊(𝑛)   𝑋(𝑢,𝑡,𝑛)   𝑌(𝑢,𝑡,𝑛)

Proof of Theorem erclwwlkneq
StepHypRef Expression
1 eleq1 2837 . . . 4 (𝑡 = 𝑇 → (𝑡𝑊𝑇𝑊))
21adantr 466 . . 3 ((𝑡 = 𝑇𝑢 = 𝑈) → (𝑡𝑊𝑇𝑊))
3 eleq1 2837 . . . 4 (𝑢 = 𝑈 → (𝑢𝑊𝑈𝑊))
43adantl 467 . . 3 ((𝑡 = 𝑇𝑢 = 𝑈) → (𝑢𝑊𝑈𝑊))
5 simpl 468 . . . . 5 ((𝑡 = 𝑇𝑢 = 𝑈) → 𝑡 = 𝑇)
6 oveq1 6799 . . . . . 6 (𝑢 = 𝑈 → (𝑢 cyclShift 𝑛) = (𝑈 cyclShift 𝑛))
76adantl 467 . . . . 5 ((𝑡 = 𝑇𝑢 = 𝑈) → (𝑢 cyclShift 𝑛) = (𝑈 cyclShift 𝑛))
85, 7eqeq12d 2785 . . . 4 ((𝑡 = 𝑇𝑢 = 𝑈) → (𝑡 = (𝑢 cyclShift 𝑛) ↔ 𝑇 = (𝑈 cyclShift 𝑛)))
98rexbidv 3199 . . 3 ((𝑡 = 𝑇𝑢 = 𝑈) → (∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...𝑁)𝑇 = (𝑈 cyclShift 𝑛)))
102, 4, 93anbi123d 1546 . 2 ((𝑡 = 𝑇𝑢 = 𝑈) → ((𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛)) ↔ (𝑇𝑊𝑈𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑇 = (𝑈 cyclShift 𝑛))))
11 erclwwlkn.r . 2 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
1210, 11brabga 5122 1 ((𝑇𝑋𝑈𝑌) → (𝑇 𝑈 ↔ (𝑇𝑊𝑈𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑇 = (𝑈 cyclShift 𝑛))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1070   = wceq 1630  wcel 2144  wrex 3061   class class class wbr 4784  {copab 4844  (class class class)co 6792  0cc0 10137  ...cfz 12532   cyclShift ccsh 13742   ClWWalksN cclwwlkn 27171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-rex 3066  df-rab 3069  df-v 3351  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-iota 5994  df-fv 6039  df-ov 6795
This theorem is referenced by:  erclwwlkneqlen  27223  erclwwlknref  27224  erclwwlknsym  27225  erclwwlkntr  27226  eclclwwlkn1  27230
  Copyright terms: Public domain W3C validator