![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqvisset | Structured version Visualization version GIF version |
Description: A class equal to a variable is a set. Note the absence of dv condition, contrary to isset 3348 and issetri 3351. (Contributed by BJ, 27-Apr-2019.) |
Ref | Expression |
---|---|
eqvisset | ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3344 | . 2 ⊢ 𝑥 ∈ V | |
2 | eleq1 2828 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ V ↔ 𝐴 ∈ V)) | |
3 | 1, 2 | mpbii 223 | 1 ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2140 Vcvv 3341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-12 2197 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-an 385 df-tru 1635 df-ex 1854 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-v 3343 |
This theorem is referenced by: ceqex 3473 moeq3 3525 mo2icl 3527 eusvnfb 5012 oprabv 6870 elxp5 7278 xpsnen 8212 fival 8486 dffi2 8497 tz9.12lem1 8826 m1detdiag 20626 dvfsumlem1 24009 dchrisumlema 25398 dchrisumlem2 25400 fnimage 32364 bj-csbsnlem 33221 disjf1o 39896 mptssid 39968 fourierdlem49 40894 |
Copyright terms: Public domain | W3C validator |