MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqvincg Structured version   Visualization version   GIF version

Theorem eqvincg 3477
Description: A variable introduction law for class equality, closed form. (Contributed by Thierry Arnoux, 2-Mar-2017.)
Assertion
Ref Expression
eqvincg (𝐴𝑉 → (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥 = 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem eqvincg
StepHypRef Expression
1 elisset 3364 . . . 4 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
2 ax-1 6 . . . . . 6 (𝑥 = 𝐴 → (𝐴 = 𝐵𝑥 = 𝐴))
3 eqtr 2789 . . . . . . 7 ((𝑥 = 𝐴𝐴 = 𝐵) → 𝑥 = 𝐵)
43ex 397 . . . . . 6 (𝑥 = 𝐴 → (𝐴 = 𝐵𝑥 = 𝐵))
52, 4jca 495 . . . . 5 (𝑥 = 𝐴 → ((𝐴 = 𝐵𝑥 = 𝐴) ∧ (𝐴 = 𝐵𝑥 = 𝐵)))
65eximi 1909 . . . 4 (∃𝑥 𝑥 = 𝐴 → ∃𝑥((𝐴 = 𝐵𝑥 = 𝐴) ∧ (𝐴 = 𝐵𝑥 = 𝐵)))
7 pm3.43 451 . . . . 5 (((𝐴 = 𝐵𝑥 = 𝐴) ∧ (𝐴 = 𝐵𝑥 = 𝐵)) → (𝐴 = 𝐵 → (𝑥 = 𝐴𝑥 = 𝐵)))
87eximi 1909 . . . 4 (∃𝑥((𝐴 = 𝐵𝑥 = 𝐴) ∧ (𝐴 = 𝐵𝑥 = 𝐵)) → ∃𝑥(𝐴 = 𝐵 → (𝑥 = 𝐴𝑥 = 𝐵)))
91, 6, 83syl 18 . . 3 (𝐴𝑉 → ∃𝑥(𝐴 = 𝐵 → (𝑥 = 𝐴𝑥 = 𝐵)))
10 19.37v 2077 . . 3 (∃𝑥(𝐴 = 𝐵 → (𝑥 = 𝐴𝑥 = 𝐵)) ↔ (𝐴 = 𝐵 → ∃𝑥(𝑥 = 𝐴𝑥 = 𝐵)))
119, 10sylib 208 . 2 (𝐴𝑉 → (𝐴 = 𝐵 → ∃𝑥(𝑥 = 𝐴𝑥 = 𝐵)))
12 eqtr2 2790 . . 3 ((𝑥 = 𝐴𝑥 = 𝐵) → 𝐴 = 𝐵)
1312exlimiv 2009 . 2 (∃𝑥(𝑥 = 𝐴𝑥 = 𝐵) → 𝐴 = 𝐵)
1411, 13impbid1 215 1 (𝐴𝑉 → (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1630  wex 1851  wcel 2144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-12 2202  ax-ext 2750
This theorem depends on definitions:  df-bi 197  df-an 383  df-tru 1633  df-ex 1852  df-sb 2049  df-clab 2757  df-cleq 2763  df-clel 2766  df-v 3351
This theorem is referenced by:  eqvinc  3478  funcnv5mpt  29803
  Copyright terms: Public domain W3C validator