Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqvinc Structured version   Visualization version   GIF version

Theorem eqvinc 3328
 Description: A variable introduction law for class equality. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Proof shortened by Thierry Arnoux, 23-Jan-2022.)
Hypothesis
Ref Expression
eqvinc.1 𝐴 ∈ V
Assertion
Ref Expression
eqvinc (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eqvinc
StepHypRef Expression
1 eqvinc.1 . 2 𝐴 ∈ V
2 eqvincg 3327 . 2 (𝐴 ∈ V → (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥 = 𝐵)))
31, 2ax-mp 5 1 (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥 = 𝐵))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 384   = wceq 1482  ∃wex 1703   ∈ wcel 1989  Vcvv 3198 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-12 2046  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-an 386  df-tru 1485  df-ex 1704  df-sb 1880  df-clab 2608  df-cleq 2614  df-clel 2617  df-v 3200 This theorem is referenced by:  eqvincf  3329  dff13  6509  f1eqcocnv  6553  tfindsg  7057  findsg  7090  findcard2s  8198  indpi  9726  fcoinvbr  29403  dfrdg4  32042  bj-elsngl  32940
 Copyright terms: Public domain W3C validator