![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqv | Structured version Visualization version GIF version |
Description: The universe contains every set. (Contributed by NM, 11-Sep-2006.) |
Ref | Expression |
---|---|
eqv | ⊢ (𝐴 = V ↔ ∀𝑥 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2903 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | eqvf 3345 | 1 ⊢ (𝐴 = V ↔ ∀𝑥 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∀wal 1630 = wceq 1632 ∈ wcel 2140 Vcvv 3341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-v 3343 |
This theorem is referenced by: abv 3347 dmi 5496 dfac10 9172 dfac10c 9173 dfac10b 9174 uniwun 9775 fnsingle 32354 bj-abv 33224 ttac 38124 nev 38583 |
Copyright terms: Public domain | W3C validator |