Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqv Structured version   Visualization version   GIF version

Theorem eqv 3346
 Description: The universe contains every set. (Contributed by NM, 11-Sep-2006.)
Assertion
Ref Expression
eqv (𝐴 = V ↔ ∀𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem eqv
StepHypRef Expression
1 nfcv 2903 . 2 𝑥𝐴
21eqvf 3345 1 (𝐴 = V ↔ ∀𝑥 𝑥𝐴)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196  ∀wal 1630   = wceq 1632   ∈ wcel 2140  Vcvv 3341 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-v 3343 This theorem is referenced by:  abv  3347  dmi  5496  dfac10  9172  dfac10c  9173  dfac10b  9174  uniwun  9775  fnsingle  32354  bj-abv  33224  ttac  38124  nev  38583
 Copyright terms: Public domain W3C validator