![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equsexALT | Structured version Visualization version GIF version |
Description: Alternate proof of equsex 2328. This proves the result directly, instead of as a corollary of equsal 2327 via equs4 2326. Note in particular that only existential quantifiers appear in the proof and that the only step requiring ax-13 2282 is ax6e 2286. This proof mimics that of equsal 2327 (in particular, note that pm5.32i 670, exbii 1814, 19.41 2141, mpbiran 973 correspond respectively to pm5.74i 260, albii 1787, 19.23 2118, a1bi 351). (Contributed by BJ, 20-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
equsal.1 | ⊢ Ⅎ𝑥𝜓 |
equsal.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
equsexALT | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsal.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.32i 670 | . . 3 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) ↔ (𝑥 = 𝑦 ∧ 𝜓)) |
3 | 2 | exbii 1814 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜓)) |
4 | ax6e 2286 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
5 | equsal.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
6 | 5 | 19.41 2141 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) ↔ (∃𝑥 𝑥 = 𝑦 ∧ 𝜓)) |
7 | 4, 6 | mpbiran 973 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) ↔ 𝜓) |
8 | 3, 7 | bitri 264 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∃wex 1744 Ⅎwnf 1748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-12 2087 ax-13 2282 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 df-nf 1750 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |