![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equsalvw | Structured version Visualization version GIF version |
Description: Version of equsalv 2146 with a dv condition, and of equsal 2327 with two dv conditions, which requires fewer axioms. See also the dual form equsexvw 1978. (Contributed by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
equsalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
equsalvw | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.23v 1911 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ (∃𝑥 𝑥 = 𝑦 → 𝜓)) | |
2 | equsalvw.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | pm5.74i 260 | . . 3 ⊢ ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜓)) |
4 | 3 | albii 1787 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜓)) |
5 | ax6ev 1947 | . . 3 ⊢ ∃𝑥 𝑥 = 𝑦 | |
6 | 5 | a1bi 351 | . 2 ⊢ (𝜓 ↔ (∃𝑥 𝑥 = 𝑦 → 𝜓)) |
7 | 1, 4, 6 | 3bitr4i 292 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1521 ∃wex 1744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 |
This theorem depends on definitions: df-bi 197 df-ex 1745 |
This theorem is referenced by: ax13lem2 2332 reu8 3435 asymref2 5548 intirr 5549 fun11 6001 bj-dvelimdv 32959 bj-dvelimdv1 32960 wl-clelv2-just 33509 undmrnresiss 38227 pm13.192 38928 |
Copyright terms: Public domain | W3C validator |