MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equs5aALT Structured version   Visualization version   GIF version

Theorem equs5aALT 2175
Description: Alternate proof of equs5a 2346. Uses ax-12 2045 but not ax-13 2244. (Contributed by NM, 2-Feb-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
equs5aALT (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))

Proof of Theorem equs5aALT
StepHypRef Expression
1 nfa1 2026 . 2 𝑥𝑥(𝑥 = 𝑦𝜑)
2 ax-12 2045 . . 3 (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
32imp 445 . 2 ((𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))
41, 3exlimi 2084 1 (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1479  wex 1702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-10 2017  ax-12 2045
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1703  df-nf 1708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator