![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equncomi | Structured version Visualization version GIF version |
Description: Inference form of equncom 3866. equncomi 3867 was automatically derived from equncomiVD 39521 using the tools program translatewithout_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) |
Ref | Expression |
---|---|
equncomi.1 | ⊢ 𝐴 = (𝐵 ∪ 𝐶) |
Ref | Expression |
---|---|
equncomi | ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equncomi.1 | . 2 ⊢ 𝐴 = (𝐵 ∪ 𝐶) | |
2 | equncom 3866 | . 2 ⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵)) | |
3 | 1, 2 | mpbi 220 | 1 ⊢ 𝐴 = (𝐶 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1596 ∪ cun 3678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-v 3306 df-un 3685 |
This theorem is referenced by: disjssun 4144 difprsn1 4438 unidmrn 5778 phplem1 8255 ackbij1lem14 9168 ltxrlt 10221 ruclem6 15084 ruclem7 15085 i1f1 23577 vtxdgoddnumeven 26580 subfacp1lem1 31389 lindsenlbs 33636 poimirlem6 33647 poimirlem7 33648 poimirlem16 33657 poimirlem17 33658 pwfi2f1o 38085 cnvrcl0 38351 iunrelexp0 38413 dfrtrcl4 38449 cotrclrcl 38453 dffrege76 38652 sucidALTVD 39522 sucidALT 39523 |
Copyright terms: Public domain | W3C validator |