![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equivestrcsetc | Structured version Visualization version GIF version |
Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is an equivalence. According to definition 3.33 (1) of [Adamek] p. 36, "A functor F : A -> B is called an equivalence provided that it is full, faithful, and isomorphism-dense in the sense that for any B-object B' there exists some A-object A' such that F(A') is isomorphic to B'.". Therefore, the category of sets and the category of extensible structures are equivalent, according to definition 3.33 (2) of [Adamek] p. 36, "Categories A and B are called equivalent provided that there is an equivalence from A to B.". (Contributed by AV, 2-Apr-2020.) |
Ref | Expression |
---|---|
funcestrcsetc.e | ⊢ 𝐸 = (ExtStrCat‘𝑈) |
funcestrcsetc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcestrcsetc.b | ⊢ 𝐵 = (Base‘𝐸) |
funcestrcsetc.c | ⊢ 𝐶 = (Base‘𝑆) |
funcestrcsetc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcestrcsetc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
funcestrcsetc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))) |
equivestrcsetc.i | ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) |
Ref | Expression |
---|---|
equivestrcsetc | ⊢ (𝜑 → (𝐹(𝐸 Faith 𝑆)𝐺 ∧ 𝐹(𝐸 Full 𝑆)𝐺 ∧ ∀𝑏 ∈ 𝐶 ∃𝑎 ∈ 𝐵 ∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘𝑎))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcestrcsetc.e | . . 3 ⊢ 𝐸 = (ExtStrCat‘𝑈) | |
2 | funcestrcsetc.s | . . 3 ⊢ 𝑆 = (SetCat‘𝑈) | |
3 | funcestrcsetc.b | . . 3 ⊢ 𝐵 = (Base‘𝐸) | |
4 | funcestrcsetc.c | . . 3 ⊢ 𝐶 = (Base‘𝑆) | |
5 | funcestrcsetc.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
6 | funcestrcsetc.f | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) | |
7 | funcestrcsetc.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))) | |
8 | 1, 2, 3, 4, 5, 6, 7 | fthestrcsetc 16991 | . 2 ⊢ (𝜑 → 𝐹(𝐸 Faith 𝑆)𝐺) |
9 | 1, 2, 3, 4, 5, 6, 7 | fullestrcsetc 16992 | . 2 ⊢ (𝜑 → 𝐹(𝐸 Full 𝑆)𝐺) |
10 | 2, 5 | setcbas 16929 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 = (Base‘𝑆)) |
11 | 10, 4 | syl6reqr 2813 | . . . . . . . 8 ⊢ (𝜑 → 𝐶 = 𝑈) |
12 | 11 | eleq2d 2825 | . . . . . . 7 ⊢ (𝜑 → (𝑏 ∈ 𝐶 ↔ 𝑏 ∈ 𝑈)) |
13 | eqid 2760 | . . . . . . . . 9 ⊢ {〈(Base‘ndx), 𝑏〉} = {〈(Base‘ndx), 𝑏〉} | |
14 | equivestrcsetc.i | . . . . . . . . 9 ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) | |
15 | 13, 5, 14 | 1strwunbndx 16183 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑈) → {〈(Base‘ndx), 𝑏〉} ∈ 𝑈) |
16 | 15 | ex 449 | . . . . . . 7 ⊢ (𝜑 → (𝑏 ∈ 𝑈 → {〈(Base‘ndx), 𝑏〉} ∈ 𝑈)) |
17 | 12, 16 | sylbid 230 | . . . . . 6 ⊢ (𝜑 → (𝑏 ∈ 𝐶 → {〈(Base‘ndx), 𝑏〉} ∈ 𝑈)) |
18 | 17 | imp 444 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → {〈(Base‘ndx), 𝑏〉} ∈ 𝑈) |
19 | 1, 5 | estrcbas 16966 | . . . . . . 7 ⊢ (𝜑 → 𝑈 = (Base‘𝐸)) |
20 | 19 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → 𝑈 = (Base‘𝐸)) |
21 | 20, 3 | syl6reqr 2813 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → 𝐵 = 𝑈) |
22 | 18, 21 | eleqtrrd 2842 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → {〈(Base‘ndx), 𝑏〉} ∈ 𝐵) |
23 | fveq2 6352 | . . . . . . 7 ⊢ (𝑎 = {〈(Base‘ndx), 𝑏〉} → (𝐹‘𝑎) = (𝐹‘{〈(Base‘ndx), 𝑏〉})) | |
24 | 23 | f1oeq3d 6295 | . . . . . 6 ⊢ (𝑎 = {〈(Base‘ndx), 𝑏〉} → (𝑖:𝑏–1-1-onto→(𝐹‘𝑎) ↔ 𝑖:𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉}))) |
25 | 24 | exbidv 1999 | . . . . 5 ⊢ (𝑎 = {〈(Base‘ndx), 𝑏〉} → (∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘𝑎) ↔ ∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉}))) |
26 | 25 | adantl 473 | . . . 4 ⊢ (((𝜑 ∧ 𝑏 ∈ 𝐶) ∧ 𝑎 = {〈(Base‘ndx), 𝑏〉}) → (∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘𝑎) ↔ ∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉}))) |
27 | f1oi 6335 | . . . . . 6 ⊢ ( I ↾ 𝑏):𝑏–1-1-onto→𝑏 | |
28 | 1, 2, 3, 4, 5, 6 | funcestrcsetclem1 16981 | . . . . . . . . 9 ⊢ ((𝜑 ∧ {〈(Base‘ndx), 𝑏〉} ∈ 𝐵) → (𝐹‘{〈(Base‘ndx), 𝑏〉}) = (Base‘{〈(Base‘ndx), 𝑏〉})) |
29 | 22, 28 | syldan 488 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → (𝐹‘{〈(Base‘ndx), 𝑏〉}) = (Base‘{〈(Base‘ndx), 𝑏〉})) |
30 | 13 | 1strbas 16182 | . . . . . . . . 9 ⊢ (𝑏 ∈ 𝐶 → 𝑏 = (Base‘{〈(Base‘ndx), 𝑏〉})) |
31 | 30 | adantl 473 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → 𝑏 = (Base‘{〈(Base‘ndx), 𝑏〉})) |
32 | 29, 31 | eqtr4d 2797 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → (𝐹‘{〈(Base‘ndx), 𝑏〉}) = 𝑏) |
33 | 32 | f1oeq3d 6295 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → (( I ↾ 𝑏):𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉}) ↔ ( I ↾ 𝑏):𝑏–1-1-onto→𝑏)) |
34 | 27, 33 | mpbiri 248 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → ( I ↾ 𝑏):𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉})) |
35 | vex 3343 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
36 | resiexg 7267 | . . . . . . 7 ⊢ (𝑏 ∈ V → ( I ↾ 𝑏) ∈ V) | |
37 | 35, 36 | ax-mp 5 | . . . . . 6 ⊢ ( I ↾ 𝑏) ∈ V |
38 | f1oeq1 6288 | . . . . . 6 ⊢ (𝑖 = ( I ↾ 𝑏) → (𝑖:𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉}) ↔ ( I ↾ 𝑏):𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉}))) | |
39 | 37, 38 | spcev 3440 | . . . . 5 ⊢ (( I ↾ 𝑏):𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉}) → ∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉})) |
40 | 34, 39 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → ∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘{〈(Base‘ndx), 𝑏〉})) |
41 | 22, 26, 40 | rspcedvd 3456 | . . 3 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝐶) → ∃𝑎 ∈ 𝐵 ∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘𝑎)) |
42 | 41 | ralrimiva 3104 | . 2 ⊢ (𝜑 → ∀𝑏 ∈ 𝐶 ∃𝑎 ∈ 𝐵 ∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘𝑎)) |
43 | 8, 9, 42 | 3jca 1123 | 1 ⊢ (𝜑 → (𝐹(𝐸 Faith 𝑆)𝐺 ∧ 𝐹(𝐸 Full 𝑆)𝐺 ∧ ∀𝑏 ∈ 𝐶 ∃𝑎 ∈ 𝐵 ∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘𝑎))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∃wex 1853 ∈ wcel 2139 ∀wral 3050 ∃wrex 3051 Vcvv 3340 {csn 4321 〈cop 4327 class class class wbr 4804 ↦ cmpt 4881 I cid 5173 ↾ cres 5268 –1-1-onto→wf1o 6048 ‘cfv 6049 (class class class)co 6813 ↦ cmpt2 6815 ↑𝑚 cmap 8023 WUnicwun 9714 ndxcnx 16056 Basecbs 16059 Full cful 16763 Faith cfth 16764 SetCatcsetc 16926 ExtStrCatcestrc 16963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-map 8025 df-ixp 8075 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-wun 9716 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-dec 11686 df-uz 11880 df-fz 12520 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-hom 16168 df-cco 16169 df-cat 16530 df-cid 16531 df-func 16719 df-full 16765 df-fth 16766 df-setc 16927 df-estrc 16964 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |