![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqtr3 | Structured version Visualization version GIF version |
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) |
Ref | Expression |
---|---|
eqtr3 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2658 | . 2 ⊢ (𝐵 = 𝐶 ↔ 𝐶 = 𝐵) | |
2 | eqtr 2670 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐶 = 𝐵) → 𝐴 = 𝐵) | |
3 | 1, 2 | sylan2b 491 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 df-cleq 2644 |
This theorem is referenced by: neneor 2922 eueq 3411 euind 3426 reuind 3444 ssprsseq 4389 prnebg 4420 preqsnOLD 4425 3elpr2eq 4467 eusv1 4890 restidsingOLD 5494 xpcan 5605 xpcan2 5606 funopg 5960 foco 6163 funopdmsn 6455 funsndifnop 6456 mpt2fun 6804 wfr3g 7458 oawordeulem 7679 ixpfi2 8305 wemapso2lem 8498 isf32lem2 9214 fpwwe2lem13 9502 1re 10077 receu 10710 xrlttri 12010 injresinjlem 12628 cshwsexa 13616 fsumparts 14582 odd2np1 15112 prmreclem2 15668 divsfval 16254 isprs 16977 psrn 17256 grpinveu 17503 symgextf1 17887 symgfixf1 17903 efgrelexlemb 18209 lspextmo 19104 evlseu 19564 tgcmp 21252 sqf11 24910 dchrisumlem2 25224 axlowdimlem15 25881 axcontlem2 25890 wlksoneq1eq2 26616 spthonepeq 26704 uspgrn2crct 26756 wwlksnextinj 26862 frgrwopreglem5lem 27300 numclwlk1lem2f1 27347 nsnlplig 27463 nsnlpligALT 27464 grpoinveu 27501 5oalem4 28644 rnbra 29094 xreceu 29758 bnj594 31108 bnj953 31135 frr3g 31904 sltsolem1 31951 nocvxminlem 32018 fnsingle 32151 funimage 32160 funtransport 32263 funray 32372 funline 32374 hilbert1.2 32387 lineintmo 32389 bj-bary1 33292 poimirlem13 33552 poimirlem14 33553 poimirlem17 33556 poimirlem27 33566 prtlem11 34470 prter2 34485 cdleme 36165 kelac2lem 37951 frege124d 38370 2ffzoeq 41663 sprsymrelf1lem 42066 |
Copyright terms: Public domain | W3C validator |