![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqtr2 | Structured version Visualization version GIF version |
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
eqtr2 | ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2658 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
2 | eqtr 2670 | . 2 ⊢ ((𝐵 = 𝐴 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) | |
3 | 1, 2 | sylanb 488 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 df-cleq 2644 |
This theorem is referenced by: eqvincg 3360 reusv3i 4905 moop2 4995 relopabi 5278 relop 5305 restidsingOLD 5494 f0rn0 6128 fliftfun 6602 addlsub 10485 wrd2ind 13523 fsum2dlem 14545 fprodser 14723 0dvds 15049 cncongr1 15428 4sqlem12 15707 cshwshashlem1 15849 catideu 16383 pj1eu 18155 lspsneu 19171 1marepvmarrepid 20429 mdetunilem6 20471 qtopeu 21567 qtophmeo 21668 dscmet 22424 isosctrlem2 24594 ppiub 24974 axcgrtr 25840 axeuclid 25888 axcontlem2 25890 uhgr2edg 26145 usgredgreu 26155 uspgredg2vtxeu 26157 wlkon2n0 26618 spthonepeq 26704 usgr2wlkneq 26708 2pthon3v 26908 umgr2adedgspth 26913 clwwlknondisj 27086 clwwlknondisjOLD 27090 frgr2wwlkeqm 27311 2wspmdisj 27317 ajmoi 27842 chocunii 28288 3oalem2 28650 adjmo 28819 cdjreui 29419 probun 30609 bnj551 30938 soseq 31879 sltsolem1 31951 nolt02o 31970 btwnswapid 32249 bj-snsetex 33076 bj-bary1lem1 33291 poimirlem4 33543 exidu1 33785 rngoideu 33832 mapdpglem31 37309 frege55b 38508 frege55c 38529 cncfiooicclem1 40424 aacllem 42875 |
Copyright terms: Public domain | W3C validator |