MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsbc3 Structured version   Visualization version   GIF version

Theorem eqsbc3 3508
Description: Substitution applied to an atomic wff. Set theory version of eqsb3 2757. (Contributed by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
eqsbc3 (𝐴𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵𝐴 = 𝐵))
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥)

Proof of Theorem eqsbc3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 3470 . 2 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝑥 = 𝐵[𝐴 / 𝑥]𝑥 = 𝐵))
2 eqeq1 2655 . 2 (𝑦 = 𝐴 → (𝑦 = 𝐵𝐴 = 𝐵))
3 sbsbc 3472 . . 3 ([𝑦 / 𝑥]𝑥 = 𝐵[𝑦 / 𝑥]𝑥 = 𝐵)
4 eqsb3 2757 . . 3 ([𝑦 / 𝑥]𝑥 = 𝐵𝑦 = 𝐵)
53, 4bitr3i 266 . 2 ([𝑦 / 𝑥]𝑥 = 𝐵𝑦 = 𝐵)
61, 2, 5vtoclbg 3298 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1523  [wsb 1937  wcel 2030  [wsbc 3468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-v 3233  df-sbc 3469
This theorem is referenced by:  sbceqal  3520  eqsbc3r  3525  eqsbc3rOLD  3526  fmptsnd  6476  fvmptnn04if  20702  snfil  21715  f1omptsnlem  33313  mptsnunlem  33315  topdifinffinlem  33325  relowlpssretop  33342  iotavalb  38948  onfrALTlem5  39074  eqsbc3rVD  39389  onfrALTlem5VD  39435
  Copyright terms: Public domain W3C validator