![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqri | Structured version Visualization version GIF version |
Description: Infer equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 7-Oct-2017.) |
Ref | Expression |
---|---|
eqri.1 | ⊢ Ⅎ𝑥𝐴 |
eqri.2 | ⊢ Ⅎ𝑥𝐵 |
eqri.3 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
eqri | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1878 | . . 3 ⊢ Ⅎ𝑥⊤ | |
2 | eqri.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | eqri.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
4 | eqri.3 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
6 | 1, 2, 3, 5 | eqrd 3771 | . 2 ⊢ (⊤ → 𝐴 = 𝐵) |
7 | 6 | trud 1641 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1631 ⊤wtru 1632 ∈ wcel 2145 Ⅎwnfc 2900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-cleq 2764 df-clel 2767 df-nfc 2902 |
This theorem is referenced by: difrab2 29677 esum2dlem 30494 eulerpartlemn 30783 |
Copyright terms: Public domain | W3C validator |