![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqrdOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of eqrd 3771 as of 1-Dec-2021. (Contributed by Thierry Arnoux, 21-Mar-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eqrd.0 | ⊢ Ⅎ𝑥𝜑 |
eqrd.1 | ⊢ Ⅎ𝑥𝐴 |
eqrd.2 | ⊢ Ⅎ𝑥𝐵 |
eqrd.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Ref | Expression |
---|---|
eqrdOLD | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqrd.0 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | eqrd.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | eqrd.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
4 | eqrd.3 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
5 | 4 | biimpd 219 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
6 | 1, 2, 3, 5 | ssrd 3757 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
7 | 4 | biimprd 238 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐴)) |
8 | 1, 3, 2, 7 | ssrd 3757 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
9 | 6, 8 | eqssd 3769 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1631 Ⅎwnf 1856 ∈ wcel 2145 Ⅎwnfc 2900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-in 3730 df-ss 3737 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |