Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqrd Structured version   Visualization version   GIF version

Theorem eqrd 3655
 Description: Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017.) (Proof shortened by BJ, 1-Dec-2021.)
Hypotheses
Ref Expression
eqrd.0 𝑥𝜑
eqrd.1 𝑥𝐴
eqrd.2 𝑥𝐵
eqrd.3 (𝜑 → (𝑥𝐴𝑥𝐵))
Assertion
Ref Expression
eqrd (𝜑𝐴 = 𝐵)

Proof of Theorem eqrd
StepHypRef Expression
1 eqrd.0 . . 3 𝑥𝜑
2 eqrd.3 . . 3 (𝜑 → (𝑥𝐴𝑥𝐵))
31, 2alrimi 2120 . 2 (𝜑 → ∀𝑥(𝑥𝐴𝑥𝐵))
4 eqrd.1 . . 3 𝑥𝐴
5 eqrd.2 . . 3 𝑥𝐵
64, 5cleqf 2819 . 2 (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
73, 6sylibr 224 1 (𝜑𝐴 = 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196  ∀wal 1521   = wceq 1523  Ⅎwnf 1748   ∈ wcel 2030  Ⅎwnfc 2780 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-cleq 2644  df-clel 2647  df-nfc 2782 This theorem is referenced by:  sniota  5916  dissnlocfin  21380  imasnopn  21541  imasncld  21542  imasncls  21543  blval2  22414  eqri  29443  fimarab  29573  ofpreima  29593  ordtconnlem1  30098  qqhval2  30154  reprdifc  30833  topdifinfindis  33324  icorempt2  33329  isbasisrelowllem1  33333  isbasisrelowllem2  33334  areaquad  38119  rfcnpre1  39492  rfcnpre2  39504
 Copyright terms: Public domain W3C validator