Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqlkr Structured version   Visualization version   GIF version

Theorem eqlkr 34907
 Description: Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 18-Apr-2014.)
Hypotheses
Ref Expression
eqlkr.d 𝐷 = (Scalar‘𝑊)
eqlkr.k 𝐾 = (Base‘𝐷)
eqlkr.t · = (.r𝐷)
eqlkr.v 𝑉 = (Base‘𝑊)
eqlkr.f 𝐹 = (LFnl‘𝑊)
eqlkr.l 𝐿 = (LKer‘𝑊)
Assertion
Ref Expression
eqlkr ((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟))
Distinct variable groups:   𝑥,𝑟,𝐷   𝑥,𝐹   𝐺,𝑟,𝑥   𝐻,𝑟,𝑥   𝑉,𝑟,𝑥   𝐾,𝑟   𝑥,𝐿   · ,𝑟   𝑥,𝑊
Allowed substitution hints:   · (𝑥)   𝐹(𝑟)   𝐾(𝑥)   𝐿(𝑟)   𝑊(𝑟)

Proof of Theorem eqlkr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1228 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → 𝑊 ∈ LVec)
2 lveclmod 19328 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
3 eqlkr.d . . . . . . 7 𝐷 = (Scalar‘𝑊)
43lmodring 19093 . . . . . 6 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
52, 4syl 17 . . . . 5 (𝑊 ∈ LVec → 𝐷 ∈ Ring)
61, 5syl 17 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → 𝐷 ∈ Ring)
7 eqlkr.k . . . . 5 𝐾 = (Base‘𝐷)
8 eqid 2760 . . . . 5 (1r𝐷) = (1r𝐷)
97, 8ringidcl 18788 . . . 4 (𝐷 ∈ Ring → (1r𝐷) ∈ 𝐾)
106, 9syl 17 . . 3 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → (1r𝐷) ∈ 𝐾)
11 simp11 1246 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → 𝑊 ∈ LVec)
1211, 5syl 17 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → 𝐷 ∈ Ring)
13 simp12l 1371 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → 𝐺𝐹)
14 simp3 1133 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → 𝑥𝑉)
15 eqlkr.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
16 eqlkr.f . . . . . . . . 9 𝐹 = (LFnl‘𝑊)
173, 7, 15, 16lflcl 34872 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑥𝑉) → (𝐺𝑥) ∈ 𝐾)
1811, 13, 14, 17syl3anc 1477 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → (𝐺𝑥) ∈ 𝐾)
19 eqlkr.t . . . . . . . 8 · = (.r𝐷)
207, 19, 8ringridm 18792 . . . . . . 7 ((𝐷 ∈ Ring ∧ (𝐺𝑥) ∈ 𝐾) → ((𝐺𝑥) · (1r𝐷)) = (𝐺𝑥))
2112, 18, 20syl2anc 696 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → ((𝐺𝑥) · (1r𝐷)) = (𝐺𝑥))
22 simp2 1132 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → 𝐺 = (𝑉 × {(0g𝐷)}))
23 simp13 1248 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → (𝐿𝐺) = (𝐿𝐻))
2411, 2syl 17 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → 𝑊 ∈ LMod)
25 eqid 2760 . . . . . . . . . . . . 13 (0g𝐷) = (0g𝐷)
26 eqlkr.l . . . . . . . . . . . . 13 𝐿 = (LKer‘𝑊)
273, 25, 15, 16, 26lkr0f 34902 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐿𝐺) = 𝑉𝐺 = (𝑉 × {(0g𝐷)})))
2824, 13, 27syl2anc 696 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → ((𝐿𝐺) = 𝑉𝐺 = (𝑉 × {(0g𝐷)})))
2922, 28mpbird 247 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → (𝐿𝐺) = 𝑉)
3023, 29eqtr3d 2796 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → (𝐿𝐻) = 𝑉)
31 simp12r 1372 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → 𝐻𝐹)
323, 25, 15, 16, 26lkr0f 34902 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐻𝐹) → ((𝐿𝐻) = 𝑉𝐻 = (𝑉 × {(0g𝐷)})))
3324, 31, 32syl2anc 696 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → ((𝐿𝐻) = 𝑉𝐻 = (𝑉 × {(0g𝐷)})))
3430, 33mpbid 222 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → 𝐻 = (𝑉 × {(0g𝐷)}))
3522, 34eqtr4d 2797 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → 𝐺 = 𝐻)
3635fveq1d 6355 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → (𝐺𝑥) = (𝐻𝑥))
3721, 36eqtr2d 2795 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → (𝐻𝑥) = ((𝐺𝑥) · (1r𝐷)))
38373expia 1115 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → (𝑥𝑉 → (𝐻𝑥) = ((𝐺𝑥) · (1r𝐷))))
3938ralrimiv 3103 . . 3 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · (1r𝐷)))
40 oveq2 6822 . . . . . 6 (𝑟 = (1r𝐷) → ((𝐺𝑥) · 𝑟) = ((𝐺𝑥) · (1r𝐷)))
4140eqeq2d 2770 . . . . 5 (𝑟 = (1r𝐷) → ((𝐻𝑥) = ((𝐺𝑥) · 𝑟) ↔ (𝐻𝑥) = ((𝐺𝑥) · (1r𝐷))))
4241ralbidv 3124 . . . 4 (𝑟 = (1r𝐷) → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟) ↔ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · (1r𝐷))))
4342rspcev 3449 . . 3 (((1r𝐷) ∈ 𝐾 ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · (1r𝐷))) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟))
4410, 39, 43syl2anc 696 . 2 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟))
45 simpl1 1228 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)})) → 𝑊 ∈ LVec)
46 simpl2l 1283 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)})) → 𝐺𝐹)
47 simpr 479 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)})) → 𝐺 ≠ (𝑉 × {(0g𝐷)}))
483, 25, 8, 15, 16lfl1 34878 . . . 4 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × {(0g𝐷)})) → ∃𝑧𝑉 (𝐺𝑧) = (1r𝐷))
4945, 46, 47, 48syl3anc 1477 . . 3 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)})) → ∃𝑧𝑉 (𝐺𝑧) = (1r𝐷))
50 simpl1 1228 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷))) → 𝑊 ∈ LVec)
51 simpl2r 1285 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷))) → 𝐻𝐹)
52 simpr2 1236 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷))) → 𝑧𝑉)
533, 7, 15, 16lflcl 34872 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝐻𝐹𝑧𝑉) → (𝐻𝑧) ∈ 𝐾)
5450, 51, 52, 53syl3anc 1477 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷))) → (𝐻𝑧) ∈ 𝐾)
55 simp11 1246 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → 𝑊 ∈ LVec)
5655, 2syl 17 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → 𝑊 ∈ LMod)
57 simp12r 1372 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → 𝐻𝐹)
58 simp12l 1371 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → 𝐺𝐹)
59 simp3 1133 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → 𝑥𝑉)
603, 7, 15, 16lflcl 34872 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑥𝑉) → (𝐺𝑥) ∈ 𝐾)
6156, 58, 59, 60syl3anc 1477 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐺𝑥) ∈ 𝐾)
62 simp22 1250 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → 𝑧𝑉)
63 eqid 2760 . . . . . . . . . . . . . 14 ( ·𝑠𝑊) = ( ·𝑠𝑊)
643, 7, 19, 15, 63, 16lflmul 34876 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝐻𝐹 ∧ ((𝐺𝑥) ∈ 𝐾𝑧𝑉)) → (𝐻‘((𝐺𝑥)( ·𝑠𝑊)𝑧)) = ((𝐺𝑥) · (𝐻𝑧)))
6556, 57, 61, 62, 64syl112anc 1481 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐻‘((𝐺𝑥)( ·𝑠𝑊)𝑧)) = ((𝐺𝑥) · (𝐻𝑧)))
6665oveq2d 6830 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝐻𝑥)(-g𝐷)(𝐻‘((𝐺𝑥)( ·𝑠𝑊)𝑧))) = ((𝐻𝑥)(-g𝐷)((𝐺𝑥) · (𝐻𝑧))))
6715, 3, 63, 7lmodvscl 19102 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ (𝐺𝑥) ∈ 𝐾𝑧𝑉) → ((𝐺𝑥)( ·𝑠𝑊)𝑧) ∈ 𝑉)
6856, 61, 62, 67syl3anc 1477 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝐺𝑥)( ·𝑠𝑊)𝑧) ∈ 𝑉)
69 eqid 2760 . . . . . . . . . . . . . 14 (-g𝐷) = (-g𝐷)
70 eqid 2760 . . . . . . . . . . . . . 14 (-g𝑊) = (-g𝑊)
713, 69, 15, 70, 16lflsub 34875 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝐻𝐹 ∧ (𝑥𝑉 ∧ ((𝐺𝑥)( ·𝑠𝑊)𝑧) ∈ 𝑉)) → (𝐻‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = ((𝐻𝑥)(-g𝐷)(𝐻‘((𝐺𝑥)( ·𝑠𝑊)𝑧))))
7256, 57, 59, 68, 71syl112anc 1481 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐻‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = ((𝐻𝑥)(-g𝐷)(𝐻‘((𝐺𝑥)( ·𝑠𝑊)𝑧))))
7315, 70lmodvsubcl 19130 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ LMod ∧ 𝑥𝑉 ∧ ((𝐺𝑥)( ·𝑠𝑊)𝑧) ∈ 𝑉) → (𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ 𝑉)
7456, 59, 68, 73syl3anc 1477 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ 𝑉)
753, 69, 15, 70, 16lflsub 34875 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑥𝑉 ∧ ((𝐺𝑥)( ·𝑠𝑊)𝑧) ∈ 𝑉)) → (𝐺‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = ((𝐺𝑥)(-g𝐷)(𝐺‘((𝐺𝑥)( ·𝑠𝑊)𝑧))))
7656, 58, 59, 68, 75syl112anc 1481 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐺‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = ((𝐺𝑥)(-g𝐷)(𝐺‘((𝐺𝑥)( ·𝑠𝑊)𝑧))))
7755, 58, 59, 17syl3anc 1477 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐺𝑥) ∈ 𝐾)
783, 7, 19, 15, 63, 16lflmul 34876 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ ((𝐺𝑥) ∈ 𝐾𝑧𝑉)) → (𝐺‘((𝐺𝑥)( ·𝑠𝑊)𝑧)) = ((𝐺𝑥) · (𝐺𝑧)))
7956, 58, 77, 62, 78syl112anc 1481 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐺‘((𝐺𝑥)( ·𝑠𝑊)𝑧)) = ((𝐺𝑥) · (𝐺𝑧)))
80 simp23 1251 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐺𝑧) = (1r𝐷))
8180oveq2d 6830 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝐺𝑥) · (𝐺𝑧)) = ((𝐺𝑥) · (1r𝐷)))
8255, 5syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → 𝐷 ∈ Ring)
8382, 77, 20syl2anc 696 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝐺𝑥) · (1r𝐷)) = (𝐺𝑥))
8479, 81, 833eqtrd 2798 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐺‘((𝐺𝑥)( ·𝑠𝑊)𝑧)) = (𝐺𝑥))
8584oveq2d 6830 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝐺𝑥)(-g𝐷)(𝐺‘((𝐺𝑥)( ·𝑠𝑊)𝑧))) = ((𝐺𝑥)(-g𝐷)(𝐺𝑥)))
863lmodfgrp 19094 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ LMod → 𝐷 ∈ Grp)
872, 86syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∈ LVec → 𝐷 ∈ Grp)
8855, 87syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → 𝐷 ∈ Grp)
897, 25, 69grpsubid 17720 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ Grp ∧ (𝐺𝑥) ∈ 𝐾) → ((𝐺𝑥)(-g𝐷)(𝐺𝑥)) = (0g𝐷))
9088, 77, 89syl2anc 696 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝐺𝑥)(-g𝐷)(𝐺𝑥)) = (0g𝐷))
9176, 85, 903eqtrd 2798 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐺‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = (0g𝐷))
9215, 3, 25, 16, 26ellkr 34897 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → ((𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ (𝐿𝐺) ↔ ((𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ 𝑉 ∧ (𝐺‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = (0g𝐷))))
9355, 58, 92syl2anc 696 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ (𝐿𝐺) ↔ ((𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ 𝑉 ∧ (𝐺‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = (0g𝐷))))
9474, 91, 93mpbir2and 995 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ (𝐿𝐺))
95 simp13 1248 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐿𝐺) = (𝐿𝐻))
9694, 95eleqtrd 2841 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ (𝐿𝐻))
9715, 3, 25, 16, 26ellkr 34897 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LVec ∧ 𝐻𝐹) → ((𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ (𝐿𝐻) ↔ ((𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ 𝑉 ∧ (𝐻‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = (0g𝐷))))
9855, 57, 97syl2anc 696 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ (𝐿𝐻) ↔ ((𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ 𝑉 ∧ (𝐻‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = (0g𝐷))))
9996, 98mpbid 222 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ 𝑉 ∧ (𝐻‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = (0g𝐷)))
10099simprd 482 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐻‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = (0g𝐷))
10172, 100eqtr3d 2796 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝐻𝑥)(-g𝐷)(𝐻‘((𝐺𝑥)( ·𝑠𝑊)𝑧))) = (0g𝐷))
10266, 101eqtr3d 2796 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝐻𝑥)(-g𝐷)((𝐺𝑥) · (𝐻𝑧))) = (0g𝐷))
1033, 7, 15, 16lflcl 34872 . . . . . . . . . . . 12 ((𝑊 ∈ LVec ∧ 𝐻𝐹𝑥𝑉) → (𝐻𝑥) ∈ 𝐾)
10455, 57, 59, 103syl3anc 1477 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐻𝑥) ∈ 𝐾)
105543adant3 1127 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐻𝑧) ∈ 𝐾)
1063, 7, 19lmodmcl 19097 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (𝐺𝑥) ∈ 𝐾 ∧ (𝐻𝑧) ∈ 𝐾) → ((𝐺𝑥) · (𝐻𝑧)) ∈ 𝐾)
10756, 77, 105, 106syl3anc 1477 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝐺𝑥) · (𝐻𝑧)) ∈ 𝐾)
1087, 25, 69grpsubeq0 17722 . . . . . . . . . . 11 ((𝐷 ∈ Grp ∧ (𝐻𝑥) ∈ 𝐾 ∧ ((𝐺𝑥) · (𝐻𝑧)) ∈ 𝐾) → (((𝐻𝑥)(-g𝐷)((𝐺𝑥) · (𝐻𝑧))) = (0g𝐷) ↔ (𝐻𝑥) = ((𝐺𝑥) · (𝐻𝑧))))
10988, 104, 107, 108syl3anc 1477 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (((𝐻𝑥)(-g𝐷)((𝐺𝑥) · (𝐻𝑧))) = (0g𝐷) ↔ (𝐻𝑥) = ((𝐺𝑥) · (𝐻𝑧))))
110102, 109mpbid 222 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐻𝑥) = ((𝐺𝑥) · (𝐻𝑧)))
1111103expia 1115 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷))) → (𝑥𝑉 → (𝐻𝑥) = ((𝐺𝑥) · (𝐻𝑧))))
112111ralrimiv 3103 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷))) → ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · (𝐻𝑧)))
113 oveq2 6822 . . . . . . . . . 10 (𝑟 = (𝐻𝑧) → ((𝐺𝑥) · 𝑟) = ((𝐺𝑥) · (𝐻𝑧)))
114113eqeq2d 2770 . . . . . . . . 9 (𝑟 = (𝐻𝑧) → ((𝐻𝑥) = ((𝐺𝑥) · 𝑟) ↔ (𝐻𝑥) = ((𝐺𝑥) · (𝐻𝑧))))
115114ralbidv 3124 . . . . . . . 8 (𝑟 = (𝐻𝑧) → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟) ↔ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · (𝐻𝑧))))
116115rspcev 3449 . . . . . . 7 (((𝐻𝑧) ∈ 𝐾 ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · (𝐻𝑧))) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟))
11754, 112, 116syl2anc 696 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷))) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟))
1181173exp2 1448 . . . . 5 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) → (𝐺 ≠ (𝑉 × {(0g𝐷)}) → (𝑧𝑉 → ((𝐺𝑧) = (1r𝐷) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟)))))
119118imp 444 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)})) → (𝑧𝑉 → ((𝐺𝑧) = (1r𝐷) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟))))
120119rexlimdv 3168 . . 3 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)})) → (∃𝑧𝑉 (𝐺𝑧) = (1r𝐷) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟)))
12149, 120mpd 15 . 2 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)})) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟))
12244, 121pm2.61dane 3019 1 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  ∀wral 3050  ∃wrex 3051  {csn 4321   × cxp 5264  ‘cfv 6049  (class class class)co 6814  Basecbs 16079  .rcmulr 16164  Scalarcsca 16166   ·𝑠 cvsca 16167  0gc0g 16322  Grpcgrp 17643  -gcsg 17645  1rcur 18721  Ringcrg 18767  LModclmod 19085  LVecclvec 19324  LFnlclfn 34865  LKerclk 34893 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-tpos 7522  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-0g 16324  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-grp 17646  df-minusg 17647  df-sbg 17648  df-cmn 18415  df-abl 18416  df-mgp 18710  df-ur 18722  df-ring 18769  df-oppr 18843  df-dvdsr 18861  df-unit 18862  df-invr 18892  df-drng 18971  df-lmod 19087  df-lvec 19325  df-lfl 34866  df-lkr 34894 This theorem is referenced by:  eqlkr2  34908  eqlkr3  34909
 Copyright terms: Public domain W3C validator