MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqled Structured version   Visualization version   GIF version

Theorem eqled 10346
Description: Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
eqled.1 (𝜑𝐴 ∈ ℝ)
eqled.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
eqled (𝜑𝐴𝐵)

Proof of Theorem eqled
StepHypRef Expression
1 eqled.1 . 2 (𝜑𝐴 ∈ ℝ)
2 eqled.2 . 2 (𝜑𝐴 = 𝐵)
3 eqle 10345 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴𝐵)
41, 2, 3syl2anc 573 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145   class class class wbr 4787  cr 10141  cle 10281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-resscn 10199  ax-pre-lttri 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286
This theorem is referenced by:  dnibndlem6  32810  int-eqineqd  39019  sublevolico  40715  fourierdlem10  40848  fourierdlem12  40850  fourierdlem37  40875  fourierdlem48  40885  fourierdlem54  40891  fourierdlem79  40916  ioorrnopnxrlem  41040  hoidmvval0b  41321  hoidmv1lelem1  41322  hoidmvlelem2  41327  ovnhoi  41334  volico2  41372  ovolval5lem2  41384  vonioolem2  41412  lighneallem2  42048
  Copyright terms: Public domain W3C validator