![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqimssi | Structured version Visualization version GIF version |
Description: Infer subclass relationship from equality. (Contributed by NM, 6-Jan-2007.) |
Ref | Expression |
---|---|
eqimssi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eqimssi | ⊢ 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3765 | . 2 ⊢ 𝐴 ⊆ 𝐴 | |
2 | eqimssi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
3 | 1, 2 | sseqtri 3778 | 1 ⊢ 𝐴 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ⊆ wss 3715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-in 3722 df-ss 3729 |
This theorem is referenced by: funi 6081 fpr 6584 tz7.48-2 7706 trcl 8777 zorn2lem4 9513 zmin 11977 elfzo1 12712 om2uzf1oi 12946 0trrel 13921 sumsplit 14698 isumless 14776 frlmip 20319 ust0 22224 rrxprds 23377 rrxip 23378 ovoliunnul 23475 vitalilem5 23580 logtayl 24605 nbgr2vtx1edg 26445 nbuhgr2vtx1edgb 26447 mayetes3i 28897 eulerpartlemsv2 30729 eulerpartlemsv3 30732 eulerpartlemv 30735 eulerpartlemb 30739 poimirlem9 33731 dvasin 33809 dmcoss3 34526 cnvrcl0 38434 corclrcl 38501 trclrelexplem 38505 cotrcltrcl 38519 he0 38580 idhe 38583 dvsid 39032 binomcxplemnotnn0 39057 fourierdlem62 40888 fourierdlem66 40892 |
Copyright terms: Public domain | W3C validator |