![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqimss2i | Structured version Visualization version GIF version |
Description: Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.) |
Ref | Expression |
---|---|
eqimssi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eqimss2i | ⊢ 𝐵 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3657 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
2 | eqimssi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
3 | 1, 2 | sseqtr4i 3671 | 1 ⊢ 𝐵 ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ⊆ wss 3607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-in 3614 df-ss 3621 |
This theorem is referenced by: cotr3 13763 supcvg 14632 prodfclim1 14669 ef0lem 14853 1strbas 16027 restid 16141 cayley 17880 gsumval3 18354 gsumzaddlem 18367 kgencn3 21409 hmeores 21622 opnfbas 21693 tsmsf1o 21995 ust0 22070 icchmeo 22787 plyeq0lem 24011 ulmdvlem1 24199 basellem7 24858 basellem9 24860 dchrisumlem3 25225 structvtxvallem 25954 struct2griedg 25965 ivthALT 32455 aomclem4 37944 hashnzfzclim 38838 binomcxplemrat 38866 climsuselem1 40157 |
Copyright terms: Public domain | W3C validator |