![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqimss2 | Structured version Visualization version GIF version |
Description: Equality implies the subclass relation. (Contributed by NM, 23-Nov-2003.) |
Ref | Expression |
---|---|
eqimss2 | ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 3798 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | 1 | eqcoms 2768 | 1 ⊢ (𝐵 = 𝐴 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ⊆ wss 3715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-in 3722 df-ss 3729 |
This theorem is referenced by: ifpprsnss 4443 disjeq2 4776 disjeq1 4779 poeq2 5191 freq2 5237 seeq1 5238 seeq2 5239 dmcoeq 5543 xp11 5727 suc11 5992 funeq 6069 fconst3 6641 sorpssuni 7111 sorpssint 7112 tposeq 7523 oaass 7810 odi 7828 oen0 7835 inficl 8496 cantnfp1lem1 8748 cantnflem1 8759 fodomfi2 9073 zorng 9518 rlimclim 14476 imasaddfnlem 16390 imasvscafn 16399 gasubg 17935 pgpssslw 18229 dprddisj2 18638 dprd2da 18641 evlslem6 19715 topgele 20936 topontopn 20946 toponmre 21099 connima 21430 islocfin 21522 ptbasfi 21586 txdis 21637 neifil 21885 elfm3 21955 rnelfmlem 21957 alexsubALTlem3 22054 alexsubALTlem4 22055 utopsnneiplem 22252 lmclimf 23302 uniiccdif 23546 dv11cn 23963 plypf1 24167 2pthon3v 27063 hstoh 29400 dmdi2 29472 disjeq1f 29694 eulerpartlemd 30737 rrvdmss 30820 refssfne 32659 neibastop3 32663 topmeet 32665 topjoin 32666 fnemeet2 32668 fnejoin1 32669 bj-restuni 33356 heiborlem3 33925 lsatelbN 34796 lkrscss 34888 lshpset2N 34909 mapdrvallem2 37436 hdmaprnlem3eN 37652 hdmaplkr 37707 uneqsn 38823 ssrecnpr 39009 founiiun 39859 founiiun0 39876 caragendifcl 41234 |
Copyright terms: Public domain | W3C validator |