![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqif | Structured version Visualization version GIF version |
Description: Expansion of an equality with a conditional operator. (Contributed by NM, 14-Feb-2005.) |
Ref | Expression |
---|---|
eqif | ⊢ (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ ((𝜑 ∧ 𝐴 = 𝐵) ∨ (¬ 𝜑 ∧ 𝐴 = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2771 | . 2 ⊢ (if(𝜑, 𝐵, 𝐶) = 𝐵 → (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ 𝐴 = 𝐵)) | |
2 | eqeq2 2771 | . 2 ⊢ (if(𝜑, 𝐵, 𝐶) = 𝐶 → (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ 𝐴 = 𝐶)) | |
3 | 1, 2 | elimif 4266 | 1 ⊢ (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ ((𝜑 ∧ 𝐴 = 𝐵) ∨ (¬ 𝜑 ∧ 𝐴 = 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1632 ifcif 4230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-if 4231 |
This theorem is referenced by: ifval 4271 xpima 5734 fin23lem19 9370 fin23lem28 9374 fin23lem29 9375 fin23lem30 9376 aalioulem3 24308 iocinif 29873 fsumcvg4 30326 ind1a 30411 esumsnf 30456 itg2addnclem2 33793 clsk1indlem4 38862 afvpcfv0 41750 |
Copyright terms: Public domain | W3C validator |