Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqgabl Structured version   Visualization version   GIF version

Theorem eqgabl 18286
 Description: Value of the subgroup coset equivalence relation on an abelian group. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
eqgabl.x 𝑋 = (Base‘𝐺)
eqgabl.n = (-g𝐺)
eqgabl.r = (𝐺 ~QG 𝑆)
Assertion
Ref Expression
eqgabl ((𝐺 ∈ Abel ∧ 𝑆𝑋) → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐵 𝐴) ∈ 𝑆)))

Proof of Theorem eqgabl
StepHypRef Expression
1 eqgabl.x . . 3 𝑋 = (Base‘𝐺)
2 eqid 2651 . . 3 (invg𝐺) = (invg𝐺)
3 eqid 2651 . . 3 (+g𝐺) = (+g𝐺)
4 eqgabl.r . . 3 = (𝐺 ~QG 𝑆)
51, 2, 3, 4eqgval 17690 . 2 ((𝐺 ∈ Abel ∧ 𝑆𝑋) → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆)))
6 simpll 805 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐺 ∈ Abel)
7 ablgrp 18244 . . . . . . . . 9 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
87ad2antrr 762 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐺 ∈ Grp)
9 simprl 809 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
101, 2grpinvcl 17514 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
118, 9, 10syl2anc 694 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((invg𝐺)‘𝐴) ∈ 𝑋)
12 simprr 811 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
131, 3ablcom 18256 . . . . . . 7 ((𝐺 ∈ Abel ∧ ((invg𝐺)‘𝐴) ∈ 𝑋𝐵𝑋) → (((invg𝐺)‘𝐴)(+g𝐺)𝐵) = (𝐵(+g𝐺)((invg𝐺)‘𝐴)))
146, 11, 12, 13syl3anc 1366 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (((invg𝐺)‘𝐴)(+g𝐺)𝐵) = (𝐵(+g𝐺)((invg𝐺)‘𝐴)))
15 eqgabl.n . . . . . . . 8 = (-g𝐺)
161, 3, 2, 15grpsubval 17512 . . . . . . 7 ((𝐵𝑋𝐴𝑋) → (𝐵 𝐴) = (𝐵(+g𝐺)((invg𝐺)‘𝐴)))
1712, 9, 16syl2anc 694 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐵 𝐴) = (𝐵(+g𝐺)((invg𝐺)‘𝐴)))
1814, 17eqtr4d 2688 . . . . 5 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (((invg𝐺)‘𝐴)(+g𝐺)𝐵) = (𝐵 𝐴))
1918eleq1d 2715 . . . 4 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆 ↔ (𝐵 𝐴) ∈ 𝑆))
2019pm5.32da 674 . . 3 ((𝐺 ∈ Abel ∧ 𝑆𝑋) → (((𝐴𝑋𝐵𝑋) ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆) ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐵 𝐴) ∈ 𝑆)))
21 df-3an 1056 . . 3 ((𝐴𝑋𝐵𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆) ↔ ((𝐴𝑋𝐵𝑋) ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆))
22 df-3an 1056 . . 3 ((𝐴𝑋𝐵𝑋 ∧ (𝐵 𝐴) ∈ 𝑆) ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐵 𝐴) ∈ 𝑆))
2320, 21, 223bitr4g 303 . 2 ((𝐺 ∈ Abel ∧ 𝑆𝑋) → ((𝐴𝑋𝐵𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆) ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐵 𝐴) ∈ 𝑆)))
245, 23bitrd 268 1 ((𝐺 ∈ Abel ∧ 𝑆𝑋) → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐵 𝐴) ∈ 𝑆)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ⊆ wss 3607   class class class wbr 4685  ‘cfv 5926  (class class class)co 6690  Basecbs 15904  +gcplusg 15988  Grpcgrp 17469  invgcminusg 17470  -gcsg 17471   ~QG cqg 17637  Abelcabl 18240 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-sbg 17474  df-eqg 17640  df-cmn 18241  df-abl 18242 This theorem is referenced by:  2idlcpbl  19282  zndvds  19946  tgptsmscls  22000
 Copyright terms: Public domain W3C validator