MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqfnfv3 Structured version   Visualization version   GIF version

Theorem eqfnfv3 6477
Description: Derive equality of functions from equality of their values. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
eqfnfv3 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐵𝐴 ∧ ∀𝑥𝐴 (𝑥𝐵 ∧ (𝐹𝑥) = (𝐺𝑥)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝐵

Proof of Theorem eqfnfv3
StepHypRef Expression
1 eqfnfv2 6476 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
2 eqss 3759 . . . . 5 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
3 ancom 465 . . . . 5 ((𝐴𝐵𝐵𝐴) ↔ (𝐵𝐴𝐴𝐵))
42, 3bitri 264 . . . 4 (𝐴 = 𝐵 ↔ (𝐵𝐴𝐴𝐵))
54anbi1i 733 . . 3 ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)) ↔ ((𝐵𝐴𝐴𝐵) ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
6 anass 684 . . . 4 (((𝐵𝐴𝐴𝐵) ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)) ↔ (𝐵𝐴 ∧ (𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
7 dfss3 3733 . . . . . . 7 (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
87anbi1i 733 . . . . . 6 ((𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)) ↔ (∀𝑥𝐴 𝑥𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
9 r19.26 3202 . . . . . 6 (∀𝑥𝐴 (𝑥𝐵 ∧ (𝐹𝑥) = (𝐺𝑥)) ↔ (∀𝑥𝐴 𝑥𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
108, 9bitr4i 267 . . . . 5 ((𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)) ↔ ∀𝑥𝐴 (𝑥𝐵 ∧ (𝐹𝑥) = (𝐺𝑥)))
1110anbi2i 732 . . . 4 ((𝐵𝐴 ∧ (𝐴𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))) ↔ (𝐵𝐴 ∧ ∀𝑥𝐴 (𝑥𝐵 ∧ (𝐹𝑥) = (𝐺𝑥))))
126, 11bitri 264 . . 3 (((𝐵𝐴𝐴𝐵) ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)) ↔ (𝐵𝐴 ∧ ∀𝑥𝐴 (𝑥𝐵 ∧ (𝐹𝑥) = (𝐺𝑥))))
135, 12bitri 264 . 2 ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)) ↔ (𝐵𝐴 ∧ ∀𝑥𝐴 (𝑥𝐵 ∧ (𝐹𝑥) = (𝐺𝑥))))
141, 13syl6bb 276 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐵𝐴 ∧ ∀𝑥𝐴 (𝑥𝐵 ∧ (𝐹𝑥) = (𝐺𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wral 3050  wss 3715   Fn wfn 6044  cfv 6049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-fv 6057
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator