MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqfnfv2f Structured version   Visualization version   GIF version

Theorem eqfnfv2f 6355
Description: Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). This version of eqfnfv 6351 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 29-Jan-2004.)
Hypotheses
Ref Expression
eqfnfv2f.1 𝑥𝐹
eqfnfv2f.2 𝑥𝐺
Assertion
Ref Expression
eqfnfv2f ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem eqfnfv2f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqfnfv 6351 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
2 eqfnfv2f.1 . . . . 5 𝑥𝐹
3 nfcv 2793 . . . . 5 𝑥𝑧
42, 3nffv 6236 . . . 4 𝑥(𝐹𝑧)
5 eqfnfv2f.2 . . . . 5 𝑥𝐺
65, 3nffv 6236 . . . 4 𝑥(𝐺𝑧)
74, 6nfeq 2805 . . 3 𝑥(𝐹𝑧) = (𝐺𝑧)
8 nfv 1883 . . 3 𝑧(𝐹𝑥) = (𝐺𝑥)
9 fveq2 6229 . . . 4 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
10 fveq2 6229 . . . 4 (𝑧 = 𝑥 → (𝐺𝑧) = (𝐺𝑥))
119, 10eqeq12d 2666 . . 3 (𝑧 = 𝑥 → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹𝑥) = (𝐺𝑥)))
127, 8, 11cbvral 3197 . 2 (∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧) ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
131, 12syl6bb 276 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wnfc 2780  wral 2941   Fn wfn 5921  cfv 5926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-fv 5934
This theorem is referenced by:  aacllem  42875
  Copyright terms: Public domain W3C validator