![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqeqan12d | Structured version Visualization version GIF version |
Description: A useful inference for substituting definitions into an equality. See also eqeqan12dALT 2777. (Contributed by NM, 9-Aug-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Nov-2019.) |
Ref | Expression |
---|---|
eqeqan12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqeqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
eqeqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeqan12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | adantr 472 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) |
3 | eqeqan12d.2 | . . 3 ⊢ (𝜓 → 𝐶 = 𝐷) | |
4 | 3 | adantl 473 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐶 = 𝐷) |
5 | 2, 4 | eqeq12d 2775 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1854 df-cleq 2753 |
This theorem is referenced by: eqeqan12rd 2778 eqfnfv2 6475 f1mpt 6681 soisores 6740 xpopth 7374 f1o2ndf1 7453 fnwelem 7460 fnse 7462 tz7.48lem 7705 ecopoveq 8015 xpdom2 8220 unfilem2 8390 wemaplem1 8616 suc11reg 8689 oemapval 8753 cantnf 8763 wemapwe 8767 r0weon 9025 infxpen 9027 fodomacn 9069 sornom 9291 fin1a2lem2 9415 fin1a2lem4 9417 neg11 10524 subeqrev 10645 rpnnen1lem6 12012 rpnnen1OLD 12018 cnref1o 12020 xneg11 12239 injresinj 12783 modadd1 12901 modmul1 12917 modlteq 12938 sq11 13130 hashen 13329 fz1eqb 13337 eqwrd 13533 s111 13586 wrd2ind 13677 wwlktovf1 13901 cj11 14101 sqrt11 14202 sqabs 14246 recan 14275 reeff1 15049 efieq 15092 eulerthlem2 15689 vdwlem12 15898 xpsff1o 16430 ismhm 17538 gsmsymgreq 18052 symgfixf1 18057 odf1 18179 sylow1 18218 frgpuplem 18385 isdomn 19496 cygznlem3 20120 psgnghm 20128 tgtop11 20988 fclsval 22013 vitali 23581 recosf1o 24480 dvdsmulf1o 25119 fsumvma 25137 brcgr 25979 axlowdimlem15 26035 axcontlem1 26043 axcontlem4 26046 axcontlem7 26049 axcontlem8 26050 iswlk 26716 wlkpwwlkf1ouspgr 26988 wlknwwlksninj 26998 wlkwwlkinj 27005 wwlksnextinj 27017 clwlkclwwlkf1 27133 clwwlkf1 27178 numclwwlkqhash 27536 grpoinvf 27695 hial2eq2 28273 bnj554 31276 erdszelem9 31488 mrsubff1 31718 msubff1 31760 mvhf1 31763 fneval 32653 topfneec2 32657 f1omptsnlem 33494 f1omptsn 33495 rdgeqoa 33529 poimirlem4 33726 poimirlem26 33748 poimirlem27 33749 ismtyval 33912 extep 34372 wepwsolem 38114 fnwe2val 38121 aomclem8 38133 relexp0eq 38495 fmtnof1 41957 fmtnofac1 41992 prmdvdsfmtnof1 42009 sfprmdvdsmersenne 42030 isupwlk 42227 sprsymrelf1 42256 uspgrsprf1 42265 ismgmhm 42293 2zlidl 42444 |
Copyright terms: Public domain | W3C validator |