![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqeq12i | Structured version Visualization version GIF version |
Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 15-Jul-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Nov-2019.) |
Ref | Expression |
---|---|
eqeq12i.1 | ⊢ 𝐴 = 𝐵 |
eqeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
eqeq12i | ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq12i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqeq1i 2656 | . 2 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
3 | eqeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 3 | eqeq2i 2663 | . 2 ⊢ (𝐵 = 𝐶 ↔ 𝐵 = 𝐷) |
5 | 2, 4 | bitri 264 | 1 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 df-cleq 2644 |
This theorem is referenced by: neeq12i 2889 rabbi 3150 unineq 3910 sbceqg 4017 rabeqsn 4246 preq2b 4410 preqr2 4412 iuneq12df 4576 otth 4982 otthg 4983 rncoeq 5421 fresaunres1 6115 eqfnov 6808 mpt22eqb 6811 f1o2ndf1 7330 wfrlem5 7464 ecopovsym 7892 karden 8796 adderpqlem 9814 mulerpqlem 9815 addcmpblnr 9928 ax1ne0 10019 addid1 10254 sq11i 12994 nn0opth2i 13098 oppgcntz 17840 islpir 19297 evlsval 19567 volfiniun 23361 dvmptfsum 23783 axlowdimlem13 25879 usgredg2v 26164 issubgr 26208 pjneli 28710 iuneq12daf 29499 madjusmdetlem1 30021 breprexp 30839 bnj553 31094 bnj1253 31211 frrlem5 31909 sltval2 31934 sltsolem1 31951 nosepnelem 31955 nolt02o 31970 altopthsn 32193 bj-2upleq 33125 relowlpssretop 33342 iscrngo2 33926 sbceqi 34043 extid 34222 cdleme18d 35900 fphpd 37697 rp-fakeuninass 38179 relexp0eq 38310 comptiunov2i 38315 clsk1indlem1 38660 ntrclskb 38684 onfrALTlem5 39074 onfrALTlem4 39075 onfrALTlem5VD 39435 onfrALTlem4VD 39436 dvnprodlem3 40481 sge0xadd 40970 |
Copyright terms: Public domain | W3C validator |