![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqeltrri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
eqeltrr.1 | ⊢ 𝐴 = 𝐵 |
eqeltrr.2 | ⊢ 𝐴 ∈ 𝐶 |
Ref | Expression |
---|---|
eqeltrri | ⊢ 𝐵 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqcomi 2660 | . 2 ⊢ 𝐵 = 𝐴 |
3 | eqeltrr.2 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
4 | 2, 3 | eqeltri 2726 | 1 ⊢ 𝐵 ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∈ wcel 2030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 df-cleq 2644 df-clel 2647 |
This theorem is referenced by: 3eltr3i 2742 zfrep4 4812 p0ex 4883 pp0ex 4885 ord3ex 4886 zfpair 4934 epse 5126 unex 6998 fvresex 7181 abrexexOLD 7184 opabex3 7188 abexssex 7191 abrexex2OLD 7192 abexex 7193 oprabrexex2 7200 seqomlem3 7592 inf0 8556 scottexs 8788 kardex 8795 infxpenlem 8874 r1om 9104 cfon 9115 fin23lem16 9195 fin1a2lem6 9265 hsmexlem5 9290 brdom7disj 9391 brdom6disj 9392 1lt2pi 9765 0cn 10070 resubcli 10381 0reALT 10416 1nn 11069 10nn 11552 numsucc 11587 nummac 11596 unirnioo 12311 ioorebas 12313 fz0to4untppr 12481 om2uzrani 12791 uzrdg0i 12798 hashunlei 13250 cats1fvn 13649 trclubi 13781 4sqlem19 15714 dec2dvds 15814 mod2xnegi 15822 modsubi 15823 gcdi 15824 isstruct2 15914 grppropstr 17486 ltbval 19519 nn0srg 19864 sn0topon 20850 indistop 20854 indisuni 20855 indistps2 20864 indistps2ALT 20866 restbas 21010 leordtval2 21064 iocpnfordt 21067 icomnfordt 21068 iooordt 21069 reordt 21070 dis1stc 21350 ptcmpfi 21664 ustfn 22052 ustn0 22071 retopbas 22611 blssioo 22645 xrtgioo 22656 zcld 22663 cnperf 22670 retopconn 22679 iimulcn 22784 rembl 23354 mbfdm 23440 ismbf 23442 abelthlem9 24239 advlog 24445 advlogexp 24446 cxpcn3 24534 loglesqrt 24544 log2ub 24721 ppi1i 24939 cht2 24943 cht3 24944 bpos1lem 25052 lgslem4 25070 vmadivsum 25216 log2sumbnd 25278 selberg2 25285 selbergr 25302 iscgrg 25452 ishpg 25696 ax5seglem7 25860 fusgrfis 26267 h2hva 27959 h2hsm 27960 h2hnm 27961 norm-ii-i 28122 hhshsslem2 28253 shincli 28349 chincli 28447 lnophdi 28989 imaelshi 29045 rnelshi 29046 bdophdi 29084 dfdec100 29704 dpadd2 29746 dpmul 29749 dpmul4 29750 nn0omnd 29969 nn0archi 29971 lmatfvlem 30009 rmulccn 30102 rrhre 30193 sigaex 30300 br2base 30459 sxbrsigalem3 30462 carsgclctunlem3 30510 sitmcl 30541 rpsqrtcn 30799 hgt750lem 30857 hgt750lem2 30858 afsval 30877 kur14lem7 31320 retopsconn 31357 hfuni 32416 neibastop2lem 32480 onint1 32573 topdifinffinlem 33325 poimirlem9 33548 poimirlem28 33567 poimirlem30 33569 poimirlem32 33571 0mbf 33585 bddiblnc 33610 ftc1cnnc 33614 cncfres 33694 lineset 35342 lautset 35686 pautsetN 35702 tendoset 36364 areaquad 38119 sblpnf 38826 lhe4.4ex1a 38845 fourierdlem62 40703 fourierdlem76 40717 65537prm 41813 11gbo 41988 bgoldbtbndlem1 42018 |
Copyright terms: Public domain | W3C validator |