Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqelsuc Structured version   Visualization version   GIF version

Theorem eqelsuc 5844
 Description: A set belongs to the successor of an equal set. (Contributed by NM, 18-Aug-1994.)
Hypothesis
Ref Expression
eqelsuc.1 𝐴 ∈ V
Assertion
Ref Expression
eqelsuc (𝐴 = 𝐵𝐴 ∈ suc 𝐵)

Proof of Theorem eqelsuc
StepHypRef Expression
1 eqelsuc.1 . . 3 𝐴 ∈ V
21sucid 5842 . 2 𝐴 ∈ suc 𝐴
3 suceq 5828 . 2 (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵)
42, 3syl5eleq 2736 1 (𝐴 = 𝐵𝐴 ∈ suc 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1523   ∈ wcel 2030  Vcvv 3231  suc csuc 5763 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-v 3233  df-un 3612  df-sn 4211  df-suc 5767 This theorem is referenced by:  pssnn  8219
 Copyright terms: Public domain W3C validator