![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqeefv | Structured version Visualization version GIF version |
Description: Two points are equal iff they agree in all dimensions. (Contributed by Scott Fenton, 10-Jun-2013.) |
Ref | Expression |
---|---|
eqeefv | ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleei 25976 | . . 3 ⊢ (𝐴 ∈ (𝔼‘𝑁) → 𝐴:(1...𝑁)⟶ℝ) | |
2 | ffn 6206 | . . 3 ⊢ (𝐴:(1...𝑁)⟶ℝ → 𝐴 Fn (1...𝑁)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝔼‘𝑁) → 𝐴 Fn (1...𝑁)) |
4 | eleei 25976 | . . 3 ⊢ (𝐵 ∈ (𝔼‘𝑁) → 𝐵:(1...𝑁)⟶ℝ) | |
5 | ffn 6206 | . . 3 ⊢ (𝐵:(1...𝑁)⟶ℝ → 𝐵 Fn (1...𝑁)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐵 ∈ (𝔼‘𝑁) → 𝐵 Fn (1...𝑁)) |
7 | eqfnfv 6474 | . 2 ⊢ ((𝐴 Fn (1...𝑁) ∧ 𝐵 Fn (1...𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) | |
8 | 3, 6, 7 | syl2an 495 | 1 ⊢ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (𝐴 = 𝐵 ↔ ∀𝑖 ∈ (1...𝑁)(𝐴‘𝑖) = (𝐵‘𝑖))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 Fn wfn 6044 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 ℝcr 10127 1c1 10129 ...cfz 12519 𝔼cee 25967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-map 8025 df-ee 25970 |
This theorem is referenced by: eqeelen 25983 brbtwn2 25984 colinearalg 25989 axcgrid 25995 ax5seglem4 26011 ax5seglem5 26012 axbtwnid 26018 axeuclid 26042 axcontlem2 26044 axcontlem4 26046 axcontlem7 26049 |
Copyright terms: Public domain | W3C validator |