![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqbrtrri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
eqbrtrr.1 | ⊢ 𝐴 = 𝐵 |
eqbrtrr.2 | ⊢ 𝐴𝑅𝐶 |
Ref | Expression |
---|---|
eqbrtrri | ⊢ 𝐵𝑅𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrr.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eqcomi 2779 | . 2 ⊢ 𝐵 = 𝐴 |
3 | eqbrtrr.2 | . 2 ⊢ 𝐴𝑅𝐶 | |
4 | 2, 3 | eqbrtri 4805 | 1 ⊢ 𝐵𝑅𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1630 class class class wbr 4784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-br 4785 |
This theorem is referenced by: 3brtr3i 4813 expnass 13176 faclbnd4lem1 13283 sqrt2gt1lt2 14222 cos1bnd 15122 cos2bnd 15123 2strstr1 16193 prdsvalstr 16320 ovolre 23512 pige3 24489 atan1 24875 log2ublem1 24893 sqrtlim 24919 bposlem8 25236 chebbnd1 25381 norm-ii-i 28328 nmopadji 29283 unierri 29297 ballotlem2 30884 hgt750lemd 31060 hgt750lem 31063 pigt3 33728 stoweidlem26 40754 wallispilem5 40797 |
Copyright terms: Public domain | W3C validator |